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Abstract

Large-scale simultaneous in vivo recordings of neurons in multiple brain regions raises the

question of the probability of recording direct interactions of neurons within, and between,

multiple brain regions. In turn, identifying inter-regional communication rules between

neurons during behavioural tasks might be possible, assuming conjoint activity between

neurons in connected brain regions can be detected. Using the hypergeometric distribution,

and employing anatomically-tractable connection mapping between regions, we derive a

method to calculate the probability distribution of ‘recordable’ connections between groups

of neurons. This mathematically-derived distribution is validated by Monte Carlo simula-

tions of directed graphs representing the underlying anatomical connectivity structure. We

apply this method to simulated graphs with multiple neurons, based on counts in rat brain

regions, and to connection matrices from the Blue Brain model of the mouse neocortex

connectome. Overall, we find low probabilities of simultaneously-recording directly inter-

acting neurons in vivo in anatomically-connected regions with standard (tetrode-based)

approaches. We suggest alternative approaches, including new recording technologies and

summing neuronal activity over larger scales, offer promise for testing hypothesised inter-

regional communication and source transformation rules.
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1 Introduction

The technique of choice to understand neuronal circuit dynamics in vivo continues to be

intracranial recordings of single and multiple neurons (and of associated signals, such as

local-field potentials). Recent technical advances in neuronal recording methodologies (such

as Neuropixels probes; Jun et al. 2017; Steinmetz et al. 2020) allow recording of large num-

bers of single neurons within and between multiple brain regions simultaneously (Siegle

et al. 2019; Stringer et al. 2019; Steinmetz et al. 2019; Allen et al. 2019). These approaches

offer a level of analysis previously impossible using tetrode-based recordings. Stringer et al.

(2019), for example, simultaneously-recorded ∼3,000 neurons across the brain using Neu-

ropixels and ∼10,000 neurons in visual cortex using calcium imaging, of which an unknown

proportion might be directly interconnected. However, these recordings remain spatially-

and temporally-incomplete samplings, and achieving a true population recording is an un-

realistic goal (Buzsáki 2004). These methods undersample the activity of the true number

of neurons present within brain regions, as the number of neurons present (and potentially

active) is orders of magnitude greater than the number of recording sites available.

Large-scale, inter-regional, conjoint recordings leave the problem of understanding

granular information processing rules between neurons in connected brain regions. Many

previous studies of inter-areal interactions have analysed spiking activity of pairs of neu-

rons in different areas (Semedo et al. 2019). The probability of connection between pairs of

neurons at a given distance from each other, usually on the scale of a few hundred microme-

tres, has previously been considered (e.g. Liley and Wright 1994; Braitenberg and Schüz

1998; Holmgren et al. 2003; Kalisman, Silberberg, and Markram 2003). When considering

inter-areal interactions at the neuronal level, it is important to consider the proportions of

sampled neurons that might interact with each other in each recording, and how direct this

interaction is. Here, we provide a method for estimating proportions of sampled neurons in

anatomically-connected brain regions.

Structural connectivity provides the substrate for information transfer in the brain

(Goulas, Uylings, and Hilgetag 2017). Understanding source transformation rules may

enable us to probe how downstream neuronal observers take advantage of this information

(Buzsáki and Tingley 2018). In other words, what are the source transformation rules

applied to given inputs from area A to area B, and can we reasonably expect to infer

them, given the sampling that current methodologies afford? Being able to answer this

question will allow us, in turn, to approach the question of how transformations of neural
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Figure 1: Problem illustration: recording connections between sampled neurons.

(A) Connections between neurons in two regions, where the neurons in R1 which send direct con-

nections to R2 are marked.

(B) Randomly sampling three neurons from R1 and three neurons from R2 results in differing num-

bers of sampled neurons which are connected. In this case, all three of the sampled neurons in R2

receive a connection from a neuron sampled in R1, but two are indirect connections.

(C) As in (B), but one of the sampled neurons receives a connection from a neuron sampled in R1.

(D) Legend for panels A, B, and C.

(E, F) Examples of larger-scale networks of neurons with one-thousand neurons in each region. Blue

and red dots indicate representative samples of neurons in R1 and R2.

(G) From the network connectivity, we derive the probability distribution of the number of sampled

neurons in R2 which receive a direct connection from a neuron sampled in R1 when randomly sam-

pling 20 neurons from R1 and R2 in (F).
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coding within and between brain regions might eventuate in the generation of behaviour,

and provide a mechanistic basis for understanding cognition.

We consider the following question, using an inductive, analytic, approach: given im-

perfect samplings, how likely are we to record direct interactions between neurons in dif-

ferent brain areas? We focus on connections between neurons, and not synaptic weights,

firing patterns and so on, because structural connectivity provides the basis for any com-

munication between connected brain regions. These latter parameters likely provide the

source transformation rules between connected brain regions, but depend, in principle, on

the pattern of connectivity between the regions.

We consider several neurons in multiple brain regions, with simplified connections be-

tween neurons in these regions (see Figure 1). We use the hypergeometric distribution,

which describes the probability of sampling items with a particular property from a pop-

ulation without replacement; in this case, recording from neurons sending or receiving

connections from a population of neurons. From the hypergeometric distribution, we de-

rive the probability distribution for the possible number of interacting neurons that might

be recorded between the populations of neurons. This mathematically-derived distribution

and estimation of the number of connected neurons is validated by Monte Carlo simula-

tions of directed graphs. We apply this to illustrative examples using rat hippocampal

and subicular cell counts, and examples from the Blue Brain Project’s model of the mouse

neocortex (Reimann et al. 2019). Our results suggest the probability of conjointly record-

ing directly-interacting neurons may approach zero for tetrode recordings, but recordings

of directly-interacting neurons may be feasible with current high-site count recording tech-

nologies in well-connected brain regions. This latter possibility emphasises the need for new

methods to detect and analyse such conjoint recordings.

2 Results

Given a model M for the direct synaptic connections within and between two brain regions

A and B, this method estimates the probability distribution of the number of neurons

recorded in B that receive a connection from a neuron recorded in A, when randomly

sampling k neurons from A and m neurons from B.
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Box 1: Model assumptions

1. Autapses are not considered.

2. Multiple connections between two specific neurons are considered as one con-

nection. The direct influence of one neuron onto another is typically weak,

being mostly represented by a single synapse (Braitenberg and Schüz 1998).

3. Synaptic connection strength is not considered - just the presence or absence

of a synapse.

4. The problem is considered as a fixed state - or point estimate - so, for instance,

the dynamic nature of brain connectivity over time during chronic recordings

is not considered.

5. We do not distinguish between inhibitory and excitatory connections. Setting

up the model with statistics of, say, only inhibitory connections would then

give probabilities for that type of connection.

6. Only chemical synapses are considered and not electrical synapses (gap junc-

tions), because electric synapses could be considered as undirected connections,

while chemical synapses are directed (Reimann et al. 2017).

7. Neurons are uniformly sampled from the areas in question, and topographi-

cal changes or gradients in the area are not considered. For instance, during

simultaneous recordings in rat CA1 and subiculum, the model should be set

up with appropriate statistics relative to the recording device placement and

angle of approach, as, for example, the projections from proximal CA1 to distal

subiculum and distal CA1 to proximal subiculum are different.

8. We do not consider the issue of the probability that spiking from a neuron in

area A causes spiking in a neuron in area B (they are likely to be very weakly

interacting); we just consider that they are anatomically-connected.
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2.1 Description as a directed graph

Consider recording k and m neurons respectively from two brain regions or areas A and B,

each containing N and M neurons overall. The regions A,B are two disjoint sets of vertices,

representing neurons, in a directed graph G = (V,E), describing the physical connectivity

of the neurons through directed chemical synapses. E, the set of arrows connecting the

vertices, indicates a direct connection between two neurons in V (Reimann et al. 2017),

such that vi, vj ∈ E indicates a synaptic connection between vi and vj where vi is the

presynaptic neuron, and vj is the postsynaptic neuron.

Our assumptions impose the following constraints on the graph. The graph is simple

directed (6 - chemical synapses); it has no loops (1 - a neuron is not connected to itself)

and at most one arrow exists with the same source and target nodes (2 - multiple synaptic

connections between two neurons are bundled into one connection). Furthermore, the graph

is static (4 - nodes and edges are fixed), and all nodes and edges in the graph are of a single

type (3, 5 – no synaptic weights, no inhibitory/excitatory split).

Our primary question can be restated as: what is the probability that a random sample

of vertices VS ∪ VE from disjoint regions (VS ⊂ A, VE ⊂ B, A ∩B = ∅) contains directed

paths in which x vertices in VE are reachable from VS.

2.2 Calculating connection probability

Let X be the random variable whose value is the number of neurons recorded in B which

receive at least one connection from a neuron recorded in A. Furthermore, let XA be the

random variable whose value is the number of neurons recorded in A sending a connection

to B, and XB be the random variable whose value is the number of neurons in B receiving

a connection from a neuron recorded in A. By the chain rule of probability, and taking the

marginal distribution over XA and XB, the probability of recording x such neurons in B is
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then

P (X = x) =
n∑

k=0

M∑
l=0

P (XA = k,XB = l,X = x)

=

n∑
k=0

M∑
l=0

P (XA = k) · P (XB = l | XA = k) · P (X = x | (XB = l), (XA = k))

=
n∑

k=0

M∑
l=0

((
K
k

)
·
(
N−K
n−k

)(
N
n

) )
· P (XB = l | XA = k) ·

((
l
x

)
·
(
M−l
m−x

)(
M
m

) )
(1)

where:

N = number of neurons in A

n = number of neurons recorded in A

K = number of neurons in A which send connections to B

k = number of recorded neurons in A which send connections to B

M = number of neurons in B

m = number of neurons recorded in B

l = number of neurons in B which receive connections from neurons recorded in A

In the above formula, two things are of note. Firstly

P (X = x | (XB = l), (XA = k)) = P (X = x | (XB = l)) (2)

since knowing how many sampled neurons in A send connections to B is redundant to

calculating P (X = x) if the number of neurons in B which receive connections from the

neurons sampled in A is known. Secondly, P (XA = k) and P (X = x | (XB = l)) are

both calculated from the hypergeometric distribution, which describes the probability of

sampling items with a particular property from a population without replacement; in this

case, recording neurons sending or receiving connections from a population of neurons.

2.3 Estimating the proportion of receivers

Calculating the above distribution requires calculating P (XB = l | XA = k), the probability

of l neurons in B receiving at least one connection from a neuron recorded in A, given that k

neurons are recorded in A which send direct connections to B. Due to the indeterminacy of
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which neurons would be recorded, the possibility of recording neurons in A which project to

thousands of neurons, or just a couple of neurons in B must be considered. This calculation

is where the connectivity information between the two regions is required. For example, the

Blue Brain Project’s recipe for how connections are made between regions (Reimann et al.

2019).

Firstly, we limit the maximum geodesic distance considered between nodes in A and B

in the graph, or the number of synapses that can be used to connect the neurons in A and

B, to a value D. Building up the interactions of outgoing (AB), recurrent (BA), and local

(AA, BB) connections grants the full picture, as these building blocks are used to form any

paths between A and B. Given D, the sum over 2D−2 variables must be taken to compute

the marginal distribution P (XB = l | XA = k).

Let XAB be the random variable denoting the number of neurons recorded in B directly

connected to a neuron recorded in A. Similarly, let XAAB denote the number of neurons B

not receiving a direct connection from a neuron recorded in A, but receiving a connection

from a neuron recorded in A via two synapses, where the first synapse remains in A, and

so on. Then, for the max geodesic distance D = 1 (direct connections only)

P (XB = l | XA = k) = P (XAB = l | XA = k). (3)

While for the max geodesic distance D = 2 (two synapses allowed), the sum is taken over

two variables

P (XB = l | XA = k) =
∑
j,h

P (XAB = j | XA = k) ·

P (XAAB = h | XA = k, XAB = j) ·

P (XABB = l − j − h | XA = k, XAB = j, XAAB = h)

(4)

Consider computing P (XB = l | XA = k) for direct connections. We assume the

random variables R1, R2, . . . , Rk, representing the number of synapses that each sampled

neuron in A that projects to B sends to B, (only neurons in A which send synapses to

B are considered, as otherwise, the random variable takes the value 0 with probability

1) are independent and identically distributed with mean µ and variance σ2. Then Sk =

R1+R2+ . . .+Rk represents the number of outgoing synaptic connections from A to B. By

the central limit theorem Sk = R1 +R2 + . . .+Rk ≈ N (kµ, kσ2) for high values of k. For k

below these values, a recursive convolution operation is applied to the distributions of the
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random variables (Grinstead and Snell 2012, see Methods). Finally, we apply a function f

to Sk to produce a random variable Y = f(Sk) whereby P (Y = l) = P (XB = l | XA = k),

the original distribution we aimed to compute. The function f(s) computes the expected

number of unique neurons connected to in B with s synapses from A to B, and is defined

as follows; given M neurons in B

f(s) = M

(
1−

(
M − 1

M

)s )
.

2.4 Mean estimation

Calculating P (X = x) using the full distributions of P (XB = l | XA = k) for each k

can be too time consuming, so instead, we can consider the random variable XB to be

distributed as a single point at the mean of the true distribution with 0 variance, whereby

P (XB = l |XA = k) = 1 if l = µ, and 0 otherwise. This reduces the accuracy, but increases

the speed, of calculating P (X = x). This approach is generally necessary for large graphs

(> 100,000 nodes) with a maximum geodesic distance greater than 1 (see Supplemental

material).

2.5 Topography of brain regions

The probability of recording anatomical connections between neurons depends on the phys-

ical properties of the neural recording device (e.g. tetrodes sample in spheres; probes in

capsules; calcium imaging in thin layers) and angle of approach (e.g. parallel to a colum-

nar structure or cutting across columns). Here, we do not directly model space, instead

assuming a uniform sampling in the areas being considered. With good knowledge of the

region’s topography, and confidence that the placement of the recording device is approxi-

mately correct, a ‘constrained’ version of the statistical model can be established, whereby

the statistics reflect relative positioning of the recording probe and underlying anatomical

connectivity. However, in cases where underlying topographies or gradients are very loose

or difficult to discern (e.g. CA1 and subiculum projections to prelimbic cortex), or the to-

pographies are too cumbersome to model, the recording probe can be assumed to uniformly

sample from the entire brain area in question. These considerations stress the importance of

anatomical sophistication and guidance in deciding placements of in vivo recording devices.
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Box 2: Example calculation of a connection distribution

Consider the situation described Figure 1. Here, there are 7 neurons in each region;

there are 4 neurons which send exactly one direct connection from the first region,

and we randomly sample 3 neurons in each region. Let X denote the random variable

whose value is the number of sampled neurons in the second region receiving a direct

connection from a neuron sampled in the first region. A full calculation of P (X = x)

is below for this case:

Let

δ(k) = P (XA = k) =

((
4
k

)
·
(

3
3−k

)(
7
3

) )

γ(x, l) = P (X = x | XB = l) =

((
l
x

)
·
(
7−l
3−x

)(
7
3

) )
Then

P (X = x) =

3∑
k=0

7∑
l=0

P (XA = k,XB = l,X = x)

P (X = x) =
3∑

k=0

7∑
l=0

P (XA = k) · P (XB = l | XA = k) · P (X = x | XB = l)

P (X = x) =
3∑

k=0

7∑
l=0

δ(k) · P (XB = l | XA = k) · γ(x, l)

With

P (XB = l | XA = k) = 1 if l = k, else 0

Finally

P (X = 0) = δ(0) · γ(0, 0) + δ(1) · γ(0, 1) + δ(2) · γ(0, 2) + δ(3) · γ(0, 3) = 0.384

P (X = 1) = δ(1) · γ(1, 1) + δ(2) · γ(1, 2) + δ(3) · γ(1, 3) = 0.500

P (X = 2) = δ(2) · γ(2, 2) + δ(3) · γ(2, 3) = 0.113

P (X = 3) = δ(3) · γ(3, 3) = 0.003

(5)
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2.6 Case study: Rat hippocampal formation

Here, we draw on previously published estimates of the numbers of neurons in differing

regions of the rat hippocampal formation, with a specific focus on areas CA3, CA1 and

subiculum, as these, respectively, receive large, well-defined, anatomical projections from

the preceding area.

Source Result

Andersen et al. 2006 390,000 and 290,000 principal neurons in CA1 and subiculum,

respectively.

Amaral, Ishizuka, and

Claiborne 1990

CA3 contains 303,930 pyramidal cells.

Bezaire and Soltesz 2013 89% (347,100) of neurons in rat CA1 are pyramidal cells.

Ropireddy, Bachus, and

Ascoli 2012

CA1 occupies a volume of 18.8mm3, CA3 12.2mm33.

West, Danscher, and

Gydesen 1978

The subiculum occupies a volume of 10mm3.

Amaral, Ishizuka, and

Claiborne 1990

A CA1 pyramidal cell might receive input from about 1.8%

of the CA3 pyramidal cell population.

Arszovszki, Borhegyi,

and Klausberger 2014

Pyramidal cells in ventral CA1 commonly have terminals in

ventral subiculum, and some projections bifurcate.

Reimann et al. 2019 There is a distribution of synapse projections around the

mean.

Mechler et al. 2011 A tetrode samples neurons in a 130µm radius sphere (volume

0.0092mm3).

Gray et al. 1995 A tetrode in visual cortex has a mean yield of about 5 cells.

Table 1: Rat hippocampal formation neuron estimates and assumptions

We present results for CA3 to CA1 (see Figure 2), where key statistics are available from

neuroanatomical studies (see Table 1). Consider two situations here; recording from a

tetrode in CA1 and CA3, as well as a neuropixels probe. A tetrode is assumed to sample

from a uniform sphere, while a neuropixels probe is assumed to sample from across the whole

brain region for simplicity. In both cases, it is assumed that the topographical organisation

of neurons within these spaces is uniform.
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Figure 2: Modelling the probability of simultaneously recording directly connected neurons

in rat CA3, CA1, and the subiculum.

(A) With a tetrode in both rat CA3 and CA1, there is only a 36% chance of simultaneously recording

any directly connected neurons.

(B) Recording directly connected neurons in rat CA3 and CA1 with 79 samples (the average of a

neuropixels probe Jun et al. 2017) is more likely, with a 95% chance of between 67% and 86% of

neurons recorded in CA3 receiving a direct connection from at least one neuron in recorded in CA1.

(C) With 20 samples simultaneously obtained from rat proximal CA1 and distal subiculum, the

connected neurons are highly dependent on the underlying connectivity. If 90% of proximal CA1

pyramidal cells project to 2% of the distal subicular pyramidal cell population, ∼6 connected neurons

are expected, but if instead, 70% project to 1%, then ∼2.5 connected neurons are expected.

(D) Similarly to (C), the growth rate of connections is highly dependent on the underlying connec-

tivity between rat proximal CA1 and distal subiculum.
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With a tetrode (5 neurons) in both rat CA3 and CA1, there is just a 36% chance of

simultaneously recording any directly connected neurons, while for a probe (79 neurons)

there is 95% chance of between 67% and 86% of neurons recorded in CA3 receiving a direct

connection from at least one neuron in recorded in CA1 (see Figure 2). This is calculated

from (see Supplemental material for further details):

Let: δ = E(XB | XA = 1)

Tetrode: N = 229, n = 5, K = 229, M = 170, m = 5, δ = 3

Probe: N = 303,930, n = 79, K = 303,930, M = 390,000, m = 79, δ = 6248

(6)

Where δ = E(XB | XA = 1) denotes the expected number of neurons in CA3 that receive

a direct connection from a single neuron in CA1. For instance, with the probe, we then

assume that a single CA3 pyramidal cell sends an average of 6305 random synapses to CA1

pyramidal cells, so a single CA3 pyramidal cell would be expected to connect to 6248 CA1

pyramidal cells (more than one synapse can project to the same CA1 neuron).

The subiculum is the primary output structure of CA1 (Amaral and Witter 1989; Wit-

ter and Groenewegen 1990; O’Mara et al. 2001); CA1 pyramidal cells mostly differ along

the dorsal-ventral axis and are more homogenous along the proximal-distal axis (Ishizuka,

Cowan, and Amaral 1995; Cembrowski et al. 2016). CA1 pyramidal cells project in a

columnar fashion to subiculum (Amaral, Dolorfo, and Alvarez-Royo 1991), which is segre-

gated into discrete subclasses (Cembrowski et al. 2018). CA1 neurons display a relatively

homogenous place code, whereas subicular neurons have a very heterogenous spatial code

(Brotons-Mas et al. 2017). Consider recording pyramidal cells in the rat proximal CA1

(near CA3), which project to distal subiculum (Amaral, Dolorfo, and Alvarez-Royo 1991).

Problematically, for subicular projections from CA1, we are uncertain about many of

the key numbers (distribution of projections, number of senders, proportion of pyramidal

cells), as the relevant data do not exist in the literature. We, therefore, provide two sce-

narios, based on CA1 as follows: (for simplicity, we assume that one third of subicular cells

lie in distal subiculum (96,666 cells), and similarly for proximal CA1 (115,700 pyramidal

cells)).

� There is a high rate of projection; say, 90% of pyramidal cells in proximal CA1 project

to distal subiculum, and those that do, project to 2% of the distal subicular pyramidal

cell population (akin to CA3 to CA1 projection rates). Additionally, the percentage

of subicular pyramidal cells is akin to CA1, roughly 90%.
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� Alternatively; assume that the rate of projection is lower than CA3 to CA1, say 70% of

pyramidal cells in proximal CA1 project to 1% of the distal subicular cell population.

Additionally, assume the subiculum has a lower proportion of pyramidal cells than

CA1, say 80%.

The results are highly dependent on the underlying connectivity (see Figure 2). For instance,

if 20 samples are simultaneously obtained from rat proximal CA1 and distal subiculum,

with the high rate of projection, then about 6 connected neurons are expected, but with

the lower projection rate, this falls to ∼2.5 connected neurons. This is calculated from (see

Supplemental material for further details):

High: N = 115,700, K = 104,130, M = 87,000, E(XB | XA = 1) = 1758

Low: N = 115,700, K = 80,990, M = 77,332, E(XB | XA = 1) = 777
(7)

Where E(XB | XA = 1) denotes the expected number of neurons in distal subiculum that

receive a direct connection from a single neuron in proximal CA1 that projects to distal

subiculum.

The results suggest that in well-connected regions, conjoint recordings of directly in-

teracting neurons could be possible, though large sample sizes are required to detect them.

We estimate that roughly 40 simultaneous samples are required from rat CA3 and CA1 to

expect close to 50% of the recorded population in CA3 to directly interact with at least one

of the recorded CA1 neurons. Recent advances in recording technology, such as Neuropixels

probes, certainly allow for this possibility. Furthermore, situations like CA1 to subiculum

are conducive of simultaneously recording connected neurons as most CA1 neurons project

to a relatively large subset of the subicular cell population (and the precise location of

recording probe will matter too).

2.7 Case study: Neocortex connections

Reimann et al. (2019) present a null model of a full mouse neocortex with draft parametric

rules for short- and long-range connections to stochastically connected, morphologically

detailed neurons in a three-dimensional volume representing the full mouse neocortex (the

authors provide full connectivity matrices between brain regions in the mouse neocortex).

We apply our graph simulations and statistical estimations to this model of the mouse

neocortex using these connectivity matrices (see Figure 3), with the assumption that neurons
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Figure 3: Analyses based on the Blue Brain Project’s model of mouse neocortex.

(A, B) Visualising the connection matrix between brain regions in the neocortex (density of connec-

tions in 150 by 150 cubes of the full connectivity matrix is shown). The row in the matrix indicates

the presynaptic site, while the column indicates the postsynaptic site.

(A) Ipsilateral and local right hemisphere connections between MOp (primary motor cortex) and

SSp-ll (primary somatosensory area associated with lower limbic function).

(B) Ipsilateral and local right hemisphere connections between VISp (primary visual area) and VISl

(lateral visual area).

(C) The proportion of expected connections dependent on the number of samples recorded in each

region; direct connections are close to linear, connections along at most two synapses close to expo-

nential, and each sampled neuron in SSp-ll receives a connection from MOp along three synapses.

(D) Calculating the expected proportion of direct connections for different regions with 79 recorded

neurons in each region (the average of a neuropixels probe, Jun et al. 2017); A B indicates A sending

to B. (AUDp, AUDpo - primary and posterior auditory areas; ILA, PL - infralimbic and prelimbic

areas.)
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are recorded at random in these neocortical brain regions. This is both an interesting case

study, and highlights the accuracy of the statistical estimation on very large graphs. For

certain areas of the mouse neocortex, such as the auditory cortex, this analysis suggests that

conjoint recordings of directly connected neurons are feasible with new recording technology.

However, even for regions with lower connectivity, such as MOp (primary motor cortex) to

SSp-ll (primary somatosensory area associated with lower limbic function), the number of

sampled neurons in SSp-ll which receive connections from sampled neurons in MOp grows

rapidly if the analysis method is agnostic to the number of synaptic jumps between the

neurons (which is likely why techniques such as optogenetics can be so impactful, even if

they act on a very small subset of the full population).

Figure 4: Accuracy of the sta-

tistical estimation.

(A) The probability mass function

is accurate, but values differ more

if only using the mean to estimate

(1000 simulations of 100 random

graphs like the network in Figure

1, F; 20 samples in A, 25 in B).

(B) As in (A), but on MOp to SSp-

ll in mouse neocortex Reimann et

al. 2017 with 79 samples (50,000

simulations).

(C) The expected number of con-

nections is accurate (10,000 simula-

tions of 10 random graphs like the

network in Figure 1, F).

(D) A fixed number of samples k

which send connections are taken

from a network like Figure 1, F.

The expected number of connected

neurons in B is estimated from the

distribution of P (XB = l | XA =

k) (10,000 simulations each).

(E) Assessing the expected number

of connections from different types

of connection strategy and brain

regions (50,000 simulations each).
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2.8 Case study: Accuracy of statistical estimation

The accuracy of the statistical estimation is validated by a close match to simulated ex-

periments (see Figure 4). Our statistical formula to estimate the underlying probability

distributions and expectations gives similar results to those from Monte Carlo simulations

of the graphs in all cases, verifying the formula’s accuracy. Of note is the close match be-

tween the simulations on the Blue Brain Project’s model of MOp to SSp-ll connectivity and

our formula, indicating the statistical estimation remains accurate even when handling very

large graphs with high variance. However, as the maximum geodesic distance increases, the

accuracy begins to decrease (see Supplemental material). Nonetheless, having an accurate

statistically-based formula to calculate expected connections and avoid costly computations

is a huge benefit.

3 Discussion

A profound and unresolved issue in neuroscience is understanding the rules by which differ-

ing regions interact, and how they ‘read’ outputs from other regions sending them inputs

(‘source transformation rules’). Intracranial recordings of neuronal action potentials have

provided great insights into neuronal coding in certain brain regions. In the hippocampal

formation, such recordings have disclosed, for example, place, head direction, and grid cells

responsive to aspects of 3D space (O’Keefe and Dostrovsky 1971; Taube, Muller, and Ranck

1990; Moser, Kropff, and Moser 2008). At the limit, recording many connected neurons in

multiple brain regions provides the ideal approach to inferring neural source transformation

rules. However, most recordings to date have used small numbers of electrodes or tetrodes

with recordings restricted to perhaps tens of neurons at the most. Recent advances in record-

ing technology – such as Neuropixels – however, potentially allow simultaneous recordings

of many more neurons within and between differing brain regions. These advances, might,

therefore increase the probability of recording jointly-interacting pairs (or greater) of neu-

rons in differing brain regions, making the detection and isolation of transformation rules

between regions more tractable.

Here, using the hypergeometric distribution, and employing anatomically-tractable con-

nection mapping between regions, we derive a method to calculate the probability distribu-

tion of ‘recordable’ connections between groups of neurons. This mathematically-derived
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distribution is validated by Monte Carlo simulations of directed graphs representing the

underlying anatomical connectivity structure. We apply this method to simulated graphs

with multiple neurons, to analyses based on counts in rat brain regions, and to connec-

tion matrices from the Blue Brain model of the mouse neocortex connectome. Overall,

we find the probability of simultaneously-recording directly-connected pairs of neurons in

vivo in anatomically-connected regions can approach zero with small sample sizes – as is the

case with tetrode recordings. In turn, this lack of directly-connected, paired recordings, con-

strains inferences regarding inter-regional communication. However, alternative approaches,

including new recording technologies (such as Neuropixels) and summing neuronal activity

over larger scales, offer great promise for identifying inter-regional communication rules.

To help discover these rules, we started by considering a fundamental question: given

a random sampling of neurons from multiple anatomically-connected brain regions, what

proportion of neurons sampled from a given brain region are likely to receive at least one

connection from the neurons sampled from another given brain region? Our analyses un-

derscore the need for such simultaneous recordings, and suggest, via straightforward cal-

culations, where such recordings might be best undertaken to isolate transformation rules:

namely, within and between areas for which there is reliable, quantitative data on the

anatomical connectivity between regions. Experimental implications of this analysis sug-

gest that multiple, paired, inter-regional recordings in vivo concentrated on circuits and

synapses of known connectivity, topography, coding and behavioural correlates will be best

suited to understanding changes in neural coding at successive stages of neural information

processing.

We focus here on two differing regions for which quantitative anatomical data are

available: connected regions of the rat hippocampal formation, and auditory cortex, re-

spectively. For instance, most cells in the rodent hippocampal area CA1 are place cells

– they respond to the position in space occupied by the animal on a moment-to-moment

basis. CA1 sends the vast proportion of its efferents to the adjacent subiculum, the major

output structure of the hippocampus (Witter and Groenewegen 1990; O’Mara et al. 2001),

according to a reliable and ordered set of anatomical rules (Amaral, Dolorfo, and Alvarez-

Royo 1991; Cembrowski et al. 2018). Yet, subicular neurons display very heterogenous

responses (Brotons-Mas et al. 2017) – from no spatial signal whatsoever, to place, grid,

boundary-vector and other possible cell classes (of course, the subiculum receives inputs

from many other brain regions that might affect neural coding within subiculum; O’Mara

2005). One approach to understanding the rules the subiculum applies to the inputs it
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receives from area CA1 is from recording in CA1 and subiculum simultaneously, to try and

infer from experimental data what these transformation rules might be. Our calculations

suggest that there is a high probability of recording multiple directly interacting neurons in

anatomically densely-connected regions with high site count neural recording technologies,

such as Neuropixels. CA1 is a particularly prominent example of this, given that CA1 has

a major output structure to which it sends vast connections; the subiculum. However, this

is highly conditional on placing the recording probes in anatomically-appropriate regions of

CA1 and subiculum due to the columnar nature of subicular projections from CA1.

Our analyses, based on the Blue Brain Project, suggest that in certain areas of the

mouse neocortex, such as the auditory cortex, conjoint recordings of directly-connected or

directly-interacting neurons are feasible with new recording technology. By our calcula-

tions, when recording 79 neurons uniformly in AUDp (primary auditory area) and AUDpo

(posterior auditory area), on average, 30% of neurons in AUDp would receive a direct con-

nection from at least one neuron in AUDpo. Additionally, if connections through multiple

synapses are considered (indirect and direct connections), then even for regions with lower

connectivity, such as MOp to SSp-ll, the number of connected neurons grows exponentially

with the sample rate. This is in line with findings from techniques such as optogenetics,

where acting on just a small subset of the full population can have a profound impact.

Combining our work with improvements in connectomics and recording techniques may

assist in techniques for analysing neural source transformation rules. For instance, Elsayed

and Cunningham (2017) asked if structure in neuronal population recordings is simply to be

expected: presenting a statistical method to test if population level results are an expected

byproduct of the primary features of temporal and signal correlations and neural tuning. In

a similar vein, if our formula indicates that it is very unlikely to record direct connections

(or connections with a small number of synapses) between two regions, but high correlation

between spiking cells is still found, then it would stand to reason that it has either been

observed by chance, or some other region is regulating the activity, or there is a wider

oscillatory pattern in the brain driving the activity - but the interacting regions are not

directly driving each others activity.

The considerations here allow us to approach the dynamics of, for example, Hebbian

theories of learning or synaptic plasticity expressed in neuronal circuits. If, for example,

learning is a change in synaptic weights, then, theoretically, at least, we should be able to

detect changes in firing rates between interacting neurons embedded in neuronal circuits,
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even if the sum of the synaptic weights present in the circuit overall do not change. Alterna-

tively, the more elaborate Hebb ‘reverberatory circuit’ view suggests memory should arise

as a combination of synaptic weight changes, as well as specific circuit changes or sculpting

underly learning and memory. On this latter view, the pattern of activity in the circuit is

important, and is sculpted by synaptic weight changes. Conjoint recordings can potentially,

therefore, arbitrate on models or theories of synaptic plasticity as a memory mechanism,

especially if coupled with other technologies (such as optogenetics).

Overall, we find the probability of simultaneously-recording directly-connected pairs

of neurons in vivo in anatomically-connected regions approaches zero unless the regions

are well connected and very high site count recording techniques are used. This suggests

we may be able to infer source transformation rules from multiple, paired, inter-regional

recordings in vivo, in combination with techniques summing activity across many neurons.

Additionally, the physical properties of the neural recording device (e.g. tetrodes sample

in spheres; probes in capsules; calcium imaging in thin layers) and the angle of approach

(i.e. parallel to a columnar structure of cutting across columns) will change the odds of

recording connections, emphasising the importance of anatomical sophistication to decide

on placements. We envisage that future work would develop statistical models that account

for space by considering the neurons in a 3D volume, and then, account for time and

dynamics (e.g. firing rates and synaptic strength). The findings presented here will provide a

foundation for considering the probability of simultaneously recording connected neurons in

multiple, anatomically connected brain regions, and considering pathways to understanding

neuronal source transformation rules. Furthermore, they highlight the need to develop

analytic techniques to isolate causal structure in such recordings, in order to test theories of

synaptic plasticity and memory. Finally, the analyses here underscore the need for further

refinement of quantitative digital neuroanatomical techniques to further constrain functional

theories of neural coding.

4 Methods

4.1 Directed graph representation

A directed graph is represented by a sparse matrix indicating the presence of edges in the

graph. As such, directed graphs were represented as lists of target nodes, similar to how
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a sparse matrix can be efficiently stored as a list of lists. For instance, the representation

[2, 3], [ ], [0], [1, 2] describes a graph with four vertices 0, 1, 2, 3 and five edges 0→ 2, 0→
3, 2 → 0, 3 → 1, 3 → 2. A connection matrix representation of a directed graph can be

converted into this format by taking non-zero entries as (r, c) and inserting the value c into

the list r.

4.2 Finding paths in directed graphs

Given a list of source and target nodes in a directed graph, the number of target nodes

reachable from the source nodes was determined by running an iterative deepening depth-

limited depth-first search on the transpose graph (in which the direction of arrows are

reversed) starting from each target node, to see if any source node was reachable from

the target node. This is equivalent to running a search operation on the original graph,

and starting from source nodes to see which target nodes are reachable, but speeds up

computation by finding predecessors of target nodes as opposed to the successors of source

nodes. The result is a list of target nodes that are reachable from one or more source nodes.

4.3 Directed graph generation

Directed graphs were randomly generated in Python, while adhering to configured forms

of connectivity. To generate a directed graph representing connections between two brain

regions, the number of neurons in each region is provided, as well as distributions of forward,

recurrent and local connections in each region. Connections were then randomly generated

to adhere to these provided distributions. Connections were sampled with replacement,

representing the multiple synapses that could be formed between the same pairs of neurons.

4.4 Monte Carlo simulations

For directed graphs, random sets of source and target nodes were sampled multiple times

and the target nodes reachable from the source nodes were determined. These simulations

were performed to evaluate the statistical calculations by comparing the values obtained to

those obtained from Monte Carlo simulations.
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Additional calculations were performed to estimate the convergence rate of the esti-

mated distribution from these simulations to the true underlying distribution. This was

evaluated by checking the smoothness and variance of the simulation result with varying

numbers of iterations. This was performed on network graphs, as well as on a simulated

problem, whereby there are two bags of balls being drawn from. The first bag contains

red and black balls and the number of red balls drawn from the first bag determines the

distribution of red and black balls in the second bag. The final result is the number of red

balls drawn from the second bag. The statistics of this problem mimic the way the problem

is to be solved, but without complications of directed graphs. In all cases, at least 50,000

samples are needed for a good level of convergence in Monte Carlo simulations.

4.5 Graph visualisation

Small directed graph visualisations were performed using Networkx (Hagberg, Schult, and

Swart 2008). Nodes in the graph are positioned using the Fruchterman-Reingold force-

directed algorithm, whereby the edges in the graph are considered as springs holding the

nodes close, and the nodes apply a repelling force. The system is then simulated until

equilibrium is reached, and the graph is plotted at this point. As such, well connected

groups of neurons would be close to each other in the visualization.

Large directed graph visualisations were performed by considering the graph as a con-

nection matrix. In this connection matrix C, row r and column c having the value 1 indicates

the existence of a directed connection between node r and c. The connection matrix is con-

sidered in 150×150 sized windows, and the percentage of ones in these squares is calculated.

The result is then visualisation using a colourmap, from the minimum of 0% representing

no connections between the 22,500 pairs of neurons, to the maximum representing the most

highly connected block of neurons in the network.

4.6 Blue Brain Project model instances

Connection matrices were downloaded from the Blue brain repository (Reimann et al. 2019),

version 1.15. Instance 4 ipsilateral and local connections in the right hemisphere of the brain

were downloaded for MOp, SSp-ll, VISp, VISl, AUDp, AUDpo, ILA, PL. The data were

processed into smaller sparse matrices containing connections, and are stored on the Open
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Science Framework at https://osf.io/u396f/. These can be loaded using Scipy to handle

the npz format files.

4.7 Statistics calculation from connection matrices

Given a connection matrix C representing the connections between two brain regions, this

method calculates the distribution of forward, recurrent and local connections. Firstly, it

is assumed that brain region A has N neurons, and B has M neurons, the matrix C is

size (N + M) × (N + M). Then, the first top left N × N part of C represents the local

connections in A, the top right N ×M part represents the forward connections from A

to B, the bottom left M ×N part represents the recurrent connections from B to A, and

the bottom right M ×M part represents the local connections in B. The distribution of

connections is then calculated by summing the number of ones appearing along rows, and

then taking the average of these (excluding 0 for non-local connections), and the number of

non-zero rows in each of these four matrices.

4.8 Hypergeometric distribution

The hypergeometric distribution describes the probability of obtaining k successes in n

draws without replacement from a population of size N with K objects that would be

considered a success. Let X represent the random variable that takes the value of the

number of successes drawn from the population, then

P (X = k) =

(
K
k

)
·
(
N−K
n−k

)(
N
n

) (8)

If N is much larger than n, the binomial distribution can be used instead as a faster

approximation of the hypergeometric distribution. In this case, there would be n draws

from a population of N with replacement with p = K/N as the probability of drawing a

success. Then

P (X = k) =

(
n

k

)
pk · (1− p)n−k (9)
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4.9 Sum of identically distributed independent random variables

We assume that the random variables R1, R2, . . . , Rk representing the number of synapses

that each sampled neuron in A that sends connections to B are independent and identically

distributed with mean µ and variance σ2. We aim is to compute the distribution of the

random variable Sk = R1+R2+ . . .+Rk, which represents the number of outgoing synaptic

connections from A. By the central limit theorem Sk = R1 +R2 + . . .+Rk ≈ N(kµ, kσ2),

for high values of k (usually k > 10 is enough for a good approximation, but k > 30

is recommended). For k below these values, a convolution operation is applied to the

distributions of the random variables Grinstead and Snell 2012. If m1(x) and m2(x) are

the distribution functions of X and Y , then the convolution of m1(x) and m2(x) is the

distribution function m3 = m1 ∗m2 given by

m3(j) =
∑
i

m1(i) ·m2(j − i) (10)

4.10 Subsampling distributions

To calculate the probability distribution of the number of sampled neurons that receive

connections from another sampled set of neurons can involve very large numbers and dis-

tributions. As such, these distributions are often subsampled over a linearly spaced subset

to avoid costly calculations. Between the sample points, linear interpolation is performed

to estimate the values. However, to improve the accuracy of this operation, the second

derivative between the sample points is estimated. This value is compared to that obtained

at the next point, and if the difference is larger then the sum of the two values, this indi-

cates that there was a large change in the function between these two sample points. If this

is detected, more sample points are evaluated in between these two points to improve the

interpolation accuracy.

4.11 Python packages used

Many open-source Python packages were vital to this work, and are listed here:

� Mpmath (Johansson and others 2018) - large floating point operations at arbitrary

precision and handle cases of non-integer binomial co-efficient calculations, by using
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the gamma function.

� NumPy (Harris et al. 2020) - random number generation, storage of large arrays,

vectorised operations, and gradient estimation.

� Networkx (Hagberg, Schult, and Swart 2008) - infer numerical properties of graphs,

and for graph visualisation.

� Scipy (Virtanen et al. 2020) - sparse matrix operations and linear interpolation.

� Matplotlib (Hunter 2007) - plotting colourmaps and graphs.

� Seaborn (Waskom and team 2020) - further plotting operations.

� Pandas (McKinney 2010) - storing and retrieving the results of Monte Carlo simula-

tions.

Software availability

Python 3.8 code is available, along with instructions to reproduce this work in full and a user

interface to run further experiments, from Github at https://github.com/seankmartin/

SKMNeuralConnections.
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Supplemental material

S1 Calculations in the hippocampal formation case study

The calculations involved in determining the parameters of the statistical model in the

hippocampal formation case study are here. See Table 1 for the numbers that are used in

the calculations below. For CA3 to CA1, we calculate, for a tetrode in each region:

N =
0.0092

12.2
· 303,930 = 229 (CA3 pyramidal cells in sphere around tetrode)

n = 5 (assumed tetrode yield)

K = 229 (no knowledge of sender proportion)

M =
0.0092

18.8
· 0.89 · 390,000 = 170 (CA1 pyramidal cells in sphere around tetrode)

m = 5 (assumed tetrode yield)

E(XB | XA = 1) =
0.0092

18.8
· 0.89 · 390,000 · 0.018 = 3 (average CA3 projections)

(11)

While for a neuropixels probe in each region:

N = 303,930 (CA3 pyramidal cells)

n = 79 (assumed neuropixels probe yield)

K = 303,930 (no knowledge of sender proportion)

M = 390,000 · 0.89 = 347,100 (CA1 pyramidal cells)

m = 79 (assumed neuropixels probe yield)

E(XB | XA = 1) = 390,000 · 0.89 · 0.018 = 6248

(12)

For proximal CA1 to distal subiculum, we calculate, for the high projection rate:

N =
1

3
· 0.89 · 390,000 = 115,700 (pyramdial cells in proximal CA1)

K = 0.9 · 115,700 = 104,130 (assumed projection rate from proximal CA1)

M =
1

3
· 0.9 · 290,000 = 87,000 (pyramidal cells in distal subiculum)

E(XB | XA = 1) = 0.02 · 87,000 = 1740

(13)
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While for the low projection rate:

N =
1

3
· 0.89 · 390,000 = 115,700 (pyramdial cells in proximal CA1)

K = 0.7 · 115,700 = 80,990 (assumed projection rate from proximal CA1)

M =
1

3
· 0.8 · 290,000 = 77,332 (pyramidal cells in distal subiculum)

E(XB | XA = 1) = 0.01 · 87,000 = 777

(14)

S2 Accuracy of mean estimation versus full distribution estimation

Using the mean of P (XB = l | XA = k) is not as accurate as using the full distribution, but

may be required in some cases (e.g. large graphs and indirect connections) for computational

performance reasons. Furthermore, in general, the statistical estimation is not as accurate

at larger maximum geodesic distances, i.e. indirect connections (see Figure S1).

S3 Explaining the distributions involved in the statistical estimation

For the graph in Figure 1 panel F, we present the distributions used to obtain the final

result of P (X = x). This visualisation may help to understand how the final probability

distribution result is obtained (see Figure S2).

S4 Interpolation accuracy improvement

Since the numbers involved in calculating P (X = x) can be very large, the distributions

are sometimes taken at sample points, and linearly interpolated in between these points to

avoid calculating the full distribution. This allows the method to be run on larger graphs,

without having to use the more inaccurate mean estimation method. To help ensure that

important information is not missed, the second derivative is taken in between the points,

and a large change in this value indicates missing information. (see Figure S3).
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Figure S1: The relationship between accuracy and maximum geodesic distance.

As the maximum geodesic distance is increased the accuracy in estimating the probability mass

function reduces. However, the expectation of the distribution is a better match. These expectations

are; max distance 1: 1.59, 1.59, 1.59, max distance 2: 4.29, 4.33, 4.55, max distance 3: 8.86, 9.27, 9.22,

in the order; Monte Carlo simulation, statistical estimation; mean estimation.
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Figure S2: The distributions involved in calculating P (X = x) for Figure 1, F with 20

samples in each region.

(A) Plotting k against P (XA = k), which is hypergeometrically distributed.

(B) Plotting l against P (XA = k) · P (XB = l | XA = k) for different values of k.

(C) Summing the functions in B gives the marginal distribution of P (XB = l). Note that the blip

on the graph around 260 receivers is due to a spike in P (XA = 2) · P (XB = l | XA = 2) around

l = 260, followed by a sharp decrease.

(D) The final result of x against P (X = x) by using the distribution in C to calculate P (X =

x | XB = l) · P (XB = l) and then summing over l to obtain the final distribution.

34

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.415125doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.415125
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3: The second derivative is used to refine samples and find large change points.

(A) Plotting x against P (X = 5 |XB = x) ·P (XB = x). Extra samples are required for an accurate

subsampling that would not be picked up without running a detection step for changes.

(B) As in (A), but plotting x against P (X = 1 |XB = x) · P (XB = x).
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