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Abstract

There is a dearth of freely-available, standardised open source analysis tools available for the
analysis of neuronal signals recorded in vivo in the freely-behaving animal. In response, we
have developed a freely-available, open-source toolbox, NeuroChaT (Neuron Characterisation
Toolbox), specifically addressing this lacuna. Although we have particularly emphasised single
unit analyses for spatial coding, NeuroChaT also characterises rhythmic properties of units
and their dynamics associated with local field potential signals. NeuroChaT was developed
using Python and facilitates a complete pipeline from automation of analysis to producing and
managing publication-quality figures. Additionally, we have adopted a platform-independent
format (Hierarchical Data Format version 5) for storing recorded and analysed data. By
providing an easy-to-use software package, we aim to simplify the adoption of standardised
analyses for behavioural neurophysiology and facilitate open data sharing and collaboration
between laboratories.
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Introduction1

Where and how spatial information is represented in the brain has been of great scientific interest2

since O’Keefe & Dostrovsky [1] first described the spatially-receptive fields of hippocampal3

neurons (since named ‘place cells’). Subsequently, many spatially-responsive cell types have been4

described, including head direction cells [2, 7], grid cells (neurons with multiple receptive fields5

arranged in a triangular grid) [9, 12], as well as boundary cells and object cells (neurons that6

respond to objects placed in the environment) [27, 28]. Moreover, neurons tuned to non-spatial,7

natural stimuli (e.g. speed cells), have also been described, and are likely to contribute to the8

dynamic representations of ‘self-location’, such as for path integration [29, 34].9

Standardised methods have evolved for studying the spatial selectivity of neurons in the10

freely-behaving animal. Briefly, rats (or mice) are surgically implanted with recording electrodes11

targeted at a particular brain region or regions. After post-surgery recovery, the freely-moving12

rat traverses mazes or open fields (often in search of food). The experimental apparatus may be13

shielded from the larger laboratory by curtains, to control the local cue set. This cue set may14

be manipulated with, for example, cue rotations or selective cue deletions. Neuronal activity15

(action potentials, or ‘spikes’) is recorded, amplified, time-stamped and correlated with the16

moment-to-moment position of the rat. These correlations are used to generate colour-coded17

contour maps representing the density of spike firing at all points occupied by the rat. Under18

these conditions, many hippocampal neurons fire in a locally defined area of the maze (usually19

no more than a few percent of the total maze area) and remain silent or fire at low rates (<1 Hz)20

in other areas of the maze [34].21

Modern recording techniques may use multiple recording fine-wire electrodes or electrodes22

based on printed circuit technology [35]. These approaches generate vast amounts of data,23

particularly if acquired over long duration recording sessions. Moreover, advances in the design24

of recording electrodes have increased the number of recording sites [22, 35], increasing data25

volumes [19, 30]. Analysing such large data sets involves:26

1. Identifying the activity of single neurons from the noisy recorded data, known as spike27

sorting [21].28

2. Analysing relationships between spatial and non-spatial variables and verifying correlations.29

3. Assessing individual neurons and computing inferential statistics to describe local popula-30

tions.31

There are some open-source software packages for studying the neural codes of single neurons,32

multiple neurons, and local field potentials [15, 33]. Many individual laboratories use custom-33

written software, but there is no software package widely available implementing standardised34

algorithms for spatial and non-spatial neuronal coding within one working environment, thereby35

limiting wider adoption of in vivo electrophysiological recording methods. Nor is there a widely-36

and freely-available toolbox to analyse neuronal encoding of spatial and non-spatial information37

that also incorporates batch processing of substantial amounts of data. Finally, available38

packages do not often easily facilitate quick implementation and integration of new techniques39

along with established ones given the challenges associated with the evolution of new technology.40

To address this important lacuna, we have developed a toolbox, NeuroChaT (Neuron41

Characterisation Toolbox), a graphical user interface (GUI)-based open-source software that42

brings together peer-reviewed analysis methods in a unified framework for greater accessi-43

bility and to provide an easier implementation of analyses. We have adopted the widely-44

used platform-independent Hierarchical Data Format version 5 (HDF5) for storing recorded45

and analysed data, which is compatible with most common programming languages. Neu-46

roChaT provides a systematic approach for analysing large numbers of neurons and man-47

aging the graphical and parametric outputs. NeuroChaT is freely available from GitHub48

(https://github.com/shanemomara/omaraneurolab) under the GNU General Public License49
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Figure 1. The number of methods available in NeuroChaT for each category of analysis.

(v3.0) for non-commercial use and open source development. Sample data, a GUI user tutorial50

and extensive application programming interface (API) documentation are also provided on51

the project website. We hope NeuroChaT will enable standardisation of analyses and assist in52

developing novel algorithms and experimental designs through its ease of analysis based on a53

widely-used and standardised data format.54

Methods55

Analysis methods56

NeuroChaT consists of multiple analysis methods that produce graphical figures and numerical57

results based on the normative neuronal rate coding scheme, where changes in firing rate58

represent responses to a stimulus or stimuli. The methods that are available in NeuroChaT are59

enumerated in Figure 1 and some example graphical outputs are shown in Figure 2.60

NeuroChaT provides six analysis methods for assessing the waveform and firing properties61

of single units. Waveform properties measure characteristics such as the mean wave amplitude62

and width on each tetrode in a recording. The inter-spike interval (ISI), ISI autocorrelation,63

and cell bursting properties are calculated from the spike train of the single unit. In addition, a64

theta-modulated cell index and theta-skipping cell index for the single unit are both calculated65

by fitting an oscillating curve to the ISI autocorrelation histogram.66

NeuroChaT offers eight spatial locational analyses. The spatial path of the subject and the67

spike train are used to produce a locational firing rate map. From the firing rate map, place68

field, grid cell, border cell, and gradient cell analyses are available. The place field is determined69

by finding the connected area of activity in the arena with the highest firing rate. Grid cell70

analysis involves calculating the spatial autocorrelation of the firing rate map and assessing the71

shape formed by the peaks in autocorrelation. For border cell analyses, a border of the arena is72

estimated from the path the animal traversed and the firing rate is compared to the distance73

from the border. Gradient cell analysis begins similarly to border cell analysis and then fits a74

Gompertz function (a monotonically increasing function that exhibits a slow growth rate at75

the border and the centre of the arena) to the relationship between firing rate and the distance76

from the border.77

The following three methods are shared between spatial locational and head directional78
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Figure 2. Example plots to demonstrate the graphical output from a subset of the analyses
available in NeuroChaT. A short description of each plot follows, going from top left to bottom
right and moving along rows. (1) The mean waveform of a single unit (black) and the standard
deviation of the waveform (green). (2) The histogram of the interspike interval of a unit, with
the red dotted line showing the refractory period. (3) A wave fitted to the autocorrelation of
the interspike interval at theta frequency (8 Hz). (4) The predictive power of location, head
direction, speed, angular velocity, and border distance for the firing rate. (5) The path of the
rodent in a square arena (black) and firing (red). (6) The locational firing rate information
modulated by dwell time in the arena, with green indicating high firing rates. (7) The spatial
autocorrelation of the locational firing rate map, with red indicating high spatial autocorrelation.
(8) A polar plot showing the firing rate modulated by head direction. (9) The path of the animal
in the arena and firing activity over time. (10) A scatter plot of speed against the firing rate,
with the red line showing a line of best fit. (11) A line plot comparing the border distance to
the firing rate. (12) A histogram of spatial coherence values for 500 shuffled spike trains, with
the red line indicating the 95th percentile value. (13) The power in the local field potential
(LFP) signal at different frequencies. (14) The power of the LFP signal at different frequencies
over time, with red indicating high power values. (15) A polar plot of the LFP phase value
at each spike time, with the red line indicating the mean phase. (16) The average LFP signal
around the time of a spike occurrence.
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analyses. Time-lapse analyses examine the evolution of the firing rate over time to determine79

if spatial tuning occurs during the animal’s exploration of the environment. Shuffling tests80

randomly distribute the original spikes along the path of the animal to investigate whether81

the effect of a spatial variable on the firing rate of a unit has occurred by chance. Time-shift82

analyses gradually move the whole spike train of a unit forwards and backwards in time to83

test if there is a corresponding gradual change in the coding specificity, indicating a systematic84

variation in the firing rate and providing timing information of the spatial cells [6]. Skaggs85

information content [3] is available in NeuroChaT for any spatial variable and is appropriate to86

use in combination with these spike time-altering analyses. Furthermore, for locational analyses,87

these methods can be used in combination with coherency and sparsity measures, which assess88

the spatial quality of a single unit. For head directional analyses, these methods can be used89

with the Rayleigh Z-score and the concentration parameter for the von Mises distribution, which90

assess the uniformity of the head-direction firing rate.91

Head directional firing rate analyses are also available. These compare the spike train92

information to the head direction of the animal and can be computed for different angular93

velocities, such as when the animal is turning clockwise or counterclockwise. To round off94

NeuroChaT’s single variable spatial analysis toolkit, there are two analyses methods related to95

speed and angular velocity. In these, the spike rate is linearly correlated to the speed of the96

animal and the angular velocity of the animal’s head in both the clockwise and counter-clockwise97

directions.98

There are two multi-variable spatial analyses in NeuroChaT. The first involves building a99

multi-variable linear regression model to predict the firing rate of a single unit. The location,100

head direction, speed, angular velocity, and distance to the border are the five predictor variables101

used to estimate the firing rate of the unit at multiple binned points in time. The predictive102

power of these variables is indicative of the spatial tuning of the single unit. The second analysis103

compares the observed firing rate related to an independent variable (speed, angular velocity,104

distance to the border, or head direction) to an estimated firing rate. The estimated firing rate105

is formed solely from the binned locational firing rate map and the value of the independent106

variable in each locational bin. In this way, it can be determined if modulation of the firing rate107

by an independent variable is a real effect, or if it is attributable to an inhomogeneous sampling108

of the independent variable.109

There are two analysis methods available in NeuroChaT to analyse the raw local field110

potential (LFP) signal. The first involves computing the time-resolved frequency spectrum of111

the LFP. The second involves computing the average power in the LFP over the duration of the112

recording in the different frequency bands, such as the Theta band, using Welch’s periodogram.113

When considering the LFP in relation to the spiking information, two analyses are available.114

In the first analysis, the spike-triggered average LFP signal, the phase-locking value, and the115

spike-field coherence measures are obtained to assess the phase-locking of a unit to the LFP116

signals. In the second analysis, the distribution of the phase in the LFP at which spikes occur is117

formed by using the Hilbert Transform of the band-pass filtered LFP signal.118

In addition to the analyses listed in Figure 1, two uncategorised methods are available in119

NeuroChaT. NeuroChaT can compute the Hellinger distance and the Bhattacharyya coefficient120

between spike clusters to evaluate the separation of unit clusters on a tetrode or to compare the121

similarity of a cluster across recordings. The latter can be used to help identify if the same cell122

is present in multiple recordings. To aid analysing substantial amounts of data, NeuroChaT can123

produce a summary png plot of the spatial information on each tetrode in multiple recordings.124

For Axona data, this can recursively search directories and produce a summary for any tetrode125

file with sorted spikes and is readily extendable to other formats.126

Implementation127

NeuroChaT uses object-oriented programming (OOP), using the freely-available open-source128

programming language, Python. In OOP, classes are programming elements that work as129
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a placeholder for data and functions an object can perform, providing encapsulation of its130

attributes and actions. The relationships between the classes are shown in Figure 3 using class131

diagrams. The classes were designed to encapsulate one aspect of the software. For example, the132

NeuroChaT UI class manages the GUI and corresponding interactions between the graphical133

elements with the underlying code and data containers.134

Figure 3. Class diagrams showing the relationships between the classes in NeuroChaT. Although
each class contains several member attributes and local variables, these are not represented to
keep the diagrams compact. The regular white arrows indicate class inheritance while the black
diamond arrows indicate object composition. The numbers along an arrow specify the allowable
number of instances in the relationship. For example, in the composition between NData and
Nhdf, 1..1 indicates that an NData object has exactly one Nhdf object, while 0..1 indicates that
an Nhdf object belongs to at most one NData object.

NeuroChaT class (NeuroChaT)135

The NeuroChaT class takes information from GUI, determines what analysis or action to perform,136

and dictates to other connected classes to act accordingly. NData is a façade data structure137

composed of data classes and governs information flow between the other data classes, namely138

NSpike, NSpatial, NLfp and Nhdf. Data classes, like NSpike and NSpatial, are placeholders139

for spiking activity of neurons and the spatial position of the animal, respectively. NeuroChaT140

passes the relevant parameters to NData, and asks permission to perform the analyses, on a141

cell-by-cell basis, based on the user input in the specification phase.142

User interface class (NeuroChaT Ui)143

The NeuroChaT user interface class is the graphical component of the NeuroChaT software. It144

provides the interface for users to specify the analyses they want to perform, select the data145

and parameters for those analyses, and, finally, the graphical file format to store the results in.146

This is a simple-to-use, tick-box interface with features that enable settings and information147

to be forwarded to the NeuroChaT object. Its composing objects are all graphical elements,148

except the NeuroChaT object. Although built in a composite structure, this class is static, in149

the sense that its components cannot be altered dynamically using commands outside of the150

class itself. Therefore, the coupling between these classes to others is considered tight, and any151

changes required must involve changing the code file where the class is defined.152

6/21



Neuronal spiking information class (NSpike)153

The NSpike class is the container for neuronal spiking activities. It decodes the files that record154

the waveforms and timestamps of the spikes from a proprietary format and stores these in a155

Neurodata Without Borders (NWB) format. It also contains analyses involving spiking activity156

of the single-units, i.e. inter-spike interval, assessing rhythmicity etc., along with implementing157

the decoders for the copyrighted data formats. If the recording undergoes spike-sorting, this class158

also provides the information about which spike-waveform belongs to which putative neuron.159

Neuronal local field potential class (NLfp)160

The NLfp class is the container for recorded LFP activities. The timestamps and the amplitude161

of the LFP information are stored in the instance of this class along with other recording162

information, i.e. LFP channel number or the bandwidth of the filter that was used to extract163

the LFP signal from the recorded data. The analyses that are implemented in the class are164

frequency spectrum of the LFP signal, LFP phase distribution, phase locking and SFC of an165

event-timestamp train as that of a single-unit, event-triggered average LFP signal etc.166

Spatial information class (NSpatial)167

The NSpatial class contains methods for analysing the spatial correlation of the single units.168

The only single unit information required for this class is the timing of the activity. This is169

passed directly as an input to its methods (API use guide) or through NData. When used with170

the NData class, it receives the information through that class instead of coupling directly to171

the NSpike data. This creates a layer of independence between the data classes and reduces the172

effort required to couple them.173

Neuronal spike sorting class (NClust)174

The NClust class provides the waveform features, unit spiking activity, and measures of cluster175

separation for quality assessment of spike-sorting and measuring the cluster similarity with176

a unit in another NClust object. The class delegates the handling of the file containing the177

neuronal spike information to the NSpike object that is an attribute of the NClust instance.178

Neuronal Hierarchical Data Format class (Nhdf)179

NData also contains an Nhdf data object to provide read/write access of HDF5 files containing180

spatial or neural data within the class without decoding the proprietary file formats every time181

the data is loaded. As the HDF5 file contains all the data, it makes storage more manageable182

through a readable format. Nhdf contains methods to read and write what is called groups and183

datasets in HDF5 file format. It also contains methods that are specific to storing individual184

NSpike, NLfp, and NSpatial data to their common HDF5 container for a recording session.185

NeuroChaT creates one such file for each recording session, not for individual units or electrodes.186

Neuro-data class (NData)187

The NData object, as shown in Figure 3, comprises data objects of different kinds, and is188

built upon the composite structural object pattern [4]. This type of design pattern used in189

NeuroChaT creates a modular structure and allows the objects to alter dynamically without190

intense refactoring of the code. In NeuroChaT, NAbstract and NBase form the parent classes191

with basic and common methods and attributes across different data types. Each data class192

representing the neural data (NSpike, NClust, NLfp), along with the event class NEvent, inherits193

NBase, where NBase itself inherits NAbstract and extends its capabilities. The NSpatial class194

inherits the NAbstract class. The NData class gets one instance or object for each NSpatial,195
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NSpike and NLfp class as its attribute. The rationale behind this design is to provide an196

encapsulation of the interaction among the behavioural and neural data types, i.e. how the peers197

like NSpatial and NSpike would know each other. Either they will need to have a reference to198

each other, which increases their coupling, or they need to be cooperated using another object,199

which, in our design, is the NData object.200

A similar design principle is also followed in other composite classes of NeuroChaT. The201

getter and setter methods of the composite class instance then allow dynamically changing the202

objects or retrieving it. For example, the spatial data does not need to be changed for a single203

recording while analysing for multiple single units recorded in the same session. Therefore, the204

NSpatial object remains the same, but the data in the NSpike object changes with changing the205

units. Now, creating one instance of NData for every pair of spatial and single unit data is not206

very memory efficient. Instead, we can replace the data in the NSpike by reloading the spike207

file while it is still a member of the NData object and optimise the reuse of data objects, save208

memory, and increase the performance of the software.209

Experimental event class (NEvent)210

NEvent class implements event-related data management and basic analyses, i.e. peri-stimulus211

time histogram (PSTH) and analyses pertaining to locking of the LFP signals to the event(s).212

It also delegates the analyses to the relevant NSpike or NLfp objects. For example, if the PSTH213

is to be obtained from a spike-train, the NEvent object recruits the relevant NSpike and uses its214

function computes the same analysis.215

Visualisation and export216

NeuroChaT uses a custom python module ‘nc plot’ to plot the graphical outcomes of the217

analyses, then stores the parametric results in a tabular format and converts the data into the218

standardised HDF5 files using the Nhdf() object. The user can perform statistical analyses219

on the parametric results if required: this is the Inference phase of the data analysis workflow220

using NeuroChaT. The specifications of the data, analyses, and input parameters can be saved221

for future use in an ‘ncfg’ (NeuroChaT configuration) file. This file is in YAML format, a222

human-readable data-serialisation format commonly used for configuration files.223

Utility classes224

In addition to the primary classes already described, NeuroChaT also provides classes that225

provide essential utility functionality. NLogBox is an editable graphical widget that is subclassed226

from QTextEdit of the QtWidgets of PyQt5 to format the logged messages into HTML format.227

ParamBoxLayout is derived from QVBoxLayout and is used for arranging the parameter228

definition in a vertical layout in the Settings menu of the interface. ScrollableWidget provides a229

container of listed items so the user can scroll through the items if the list takes more space230

than the widget they are located in. UiParameters define and add the graphical elements to231

the interface. NOut replaces the standard output texts of Python or IPython (print command)232

into texts that are received by the logger of the system. UiResults is a sub-class of QDialog of233

QtWidget that displays the results of the analysis in a tabular format along with an option to234

export them in an Excel file. UiMerge is a graphical window that asks the user to select a list235

of pdf filenames to merge them into one file or to transfer to a single folder. The user can also236

select the pdf files manually using an interactive window built in UiGetFiles class.237

Operation238

NeuroChaT has been tested to run on Windows 7, Windows 10, and Ubuntu 18.04. NeuroChaT239

requires 100MB of system storage to perform a full install, including Python and Python package240
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Figure 4. The graphical user interface to NeuroChaT.

dependencies. There are no system requirements to run NeuroChaT, but at least 8GB of RAM241

is recommended.242

The NeuroChaT graphical user interface (GUI) is shown in Figure 4. The linear workflow243

for using NeuroChaT is shown in Figure 5. Initial analysis specification starts with the selection244

of data, analysis techniques to be used, and input parameters for the analyses, using the GUI.245

This set of choices is collectively referred to as the ‘configuration’. This selection is passed to246

the NeuroChaT backend, which then computes the specific analyses, and automatically plots247

and stores the graphical results to the storage disk. At the end of the analysis, a graphical table248

pops up showing the numerical results that the user can refer to for inferential analysis. These249

numerical outputs can be exported to an excel file, while graphical results are exported to a250

PDF file. NeuroChaT can store a specific configuration to be loaded again at a later date using251

the GUI.252

Batch-mode analysis253

NeuroChaT facilitates batch mode processing by providing the unit and spatial information in254

an Excel list. Researchers often keep track of identified single units or units of interest using an255

Excel file; we facilitate this analysis using this list. The output graphics are, accordingly, all256

stored in the respective data folder. Units with speculated-upon similar properties, for example,257

head-directional firing, can be listed in one file for the convenience of post hoc inferential analysis258

of population data. The verification utility in the software can verify the information specified259

in the Excel list for batch processing, i.e. whether the specified path or files exist, or whether260

the cluster unit of interest belongs to the recording or is mistyped. This ensures the user does261

not waste time finding issues after running the analyses and knows ahead of about problematic262

specifications. As many of the NeuroChaT analyses are time consuming, this is a convenient263

way of eliminating common human errors and reduces time wasted.264
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Figure 5. Linear workflow for using NeuroChaT.
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Nomenclature265

NeuroChaT provides for better data management by standardising the nomenclature in its266

output data file. It creates a unique name for each unit of a recording session using the following267

format: unit id = record id+ ‘TT’+ tet no+ ‘ SS ’+ unit no + ‘ ’+ eeg file ext where record id268

= unique file or folder identifier for each recording session used to store and identify data,269

tet no = electrode number where the unit is identified, unit no = tag of the unit or the cluster270

number in spike-sorting, eeg file ext = filename or the extension used for naming an LFP data271

file. This approach brings efficiency to managing and scrutinising the outcome of data analyses.272

Current analyses in NeuroChaT can produce more than 50 graphical outputs for each unit with273

publication-quality images. Storing them in one file creates the initial layer of output data274

management. These output files are stored in the respective data folder, so they can be easily275

traced. The unique name ‘unit id.pdf’ of the unit information is essential when working with276

many such units from the same study; otherwise, keeping track of the output graphics would be277

overwhelming in terms of the number of graphics files and the amount of disk space they would278

require.279

Converting data to a widely-accessible format280

The proprietary format data are converted into HDF5 and are accessible through the HDF5281

file viewers (www.hdfgroup.org/), once they go through NeuroChaT. Every time NeuroChaT282

analyses a unit, it stores the analysed data in the HDF5 file as a group that has been named283

following the NeuroChaT convention described above. There is always one HDF5 file for one284

recording session but different groups for each recorded unit. The recorded data are stored285

following the specification as in the NWB format [31]. NeuroChaT also has a utility that286

converts the unit data from a vendor format to HDF5 format using a data specification list like287

the one used for the batch-mode processing. Additionally, the NeuroChaT input output module288

for HDF5 through Nhdf enables writing data and attributes to any of its paths or data without289

rewriting the entire file which was a major limitation in the NWB API.290

Utility for graphics management291

Given that many units are recorded over time, the number of pdf or ps output files grows linearly.292

The PDF management utility in NeuroChaT facilitates merging the output files of interesting293

units into one file or moving them to a folder to group them together. The utility can be used294

either by providing a list of units or by manually choosing the files using an interactive window.295

At the end of each execution, NeuroChaT provides a list of pdf files where the graphical outputs296

for each analysed unit are stored. Users can export this list from the GUI utility menu and can297

use the list for merging or accumulating them into one folder. Thus, NeuroChaT also bridges298

the gap of tracing, by using unique nomenclature and managing hundreds of graphical outputs299

in a logical approach.300

Use cases301

Assessment and validation of individual neurons302

In [26, 28], we reported the presence of spatially-responsive neurons in the rat anterior and303

rostral thalamic nuclei. Consider one of the place cells as shown in Figure 6 [37]. The top and304

middle row show where in the environment one such unit becomes active (spike-plot) and the305

firing rate map of the unit with respect to the 2D location of the animal. The patch of high306

firing zone implies that the unit is responsive to the location of the animal. This patch of firing307

could result from three different factors:308

1. The unit may fire with respect to that part of the border, as in boundary vector cells [13].309
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2. The animal might face the north wall of the environment while approaching that area and310

a head directional unit may appear as a place cell, because of constraints on the trajectory311

of movement, and therefore of the sampling of unit activity (Figure 6; bottom).312

3. The unit might also be a head direction-by-place cell, where the unit fires in a certain313

location of the environment only when it is heading towards a particular direction [8].314

We can use multiple built-in analysis methods in NeuroChaT to assess and confirm whether315

the unit is a place cell as mentioned below:316

1. Multiple regression analysis models the instantaneous firing rate of the unit by a linear317

combination of the environmental variables under consideration [5] and provides the318

relative contribution of each factor on the firing property of the unit. As the firing rates319

are idiosyncratic for place and head-directional cells, the variable values were replaced by320

the corresponding average firing rate maps.321

2. Assuming the null hypothesis that the observation of a place cell is a matter of chance,322

we can do shuffling analysis. In this technique, neuronal spikes are randomly shuffled323

and the specificity index (Skaggs Information Content) [3] for each such artificial unit is324

calculated. The specificity index of the unit is tested whether it is significantly larger than325

the mean information content in a population of shuffled simulated units firing randomly326

with respect to the location.327

3. Finally, we can perform the time-shift analysis and observe whether the unit follows328

a gradual change in information content with respect to the time-shift, implying that329

the firing rate is not random, and there is a consistent and graded, or a systematic330

location-related variation.331

The multiple regression for this unit (Figure 6b) shows that the variation in spiking activity332

is primarily due to the location of the animal and is not merely due to other factors. Skaggs333

distribution shows that the information calculated from the original spiking activity is greater334

than 95th percentile of the distribution in random spiking, implying that the specificity to335

locational firing is significantly larger than the randomly-correlated units and, therefore, the null336

hypothesis of observing the locational firing of the unit by chance is not true. The time shift337

analysis, although not very smooth, still shows that there is a graded change in the information338

content, marked by the parabolic change in information content as the timing of the unit-activity339

is gradually shifted by −200 ms to 400 ms, which further implies that the effect of location on340

the firing rate is systematic rather than random.341

Assessment and validation of a population of neurons342

The analysis outcome in NeuroChaT has been used to assess the effect of stress induced by343

high-intensity light exposure to rats on its spatial information processing system, particularly344

on units that represent the head-directional information in postsubiculum of the hippocampal345

formation (HF) [36]. Following the initial cell selection, 230 units were analysed using NeuroChaT346

[37]. The units with dominant head-directional firing were identified using supervised k-means347

clustering of the distribution of multiple-regression coefficients (Figure 7a) for location and348

head-direction. We did not find significant correlations for border angular head-velocity and349

running speed of the animal. Sixty-five head-directional (HD) cells were identified to be in a350

distinct cluster, representing higher correlation to direction. Several of NeuroChaT’s numerical351

outputs such as the preferred firing direction of the HD cells and the peak firing rate were352

used for characterising the units and comparing the changes in these characteristics due to353

stress. Each unit remained a stable predictor of direction in both the conditions as the preferred354

head-directionality of units remained unaffected (Figure 7b; Pearson’s r2 = 0.64, p < 0.001)355

and the accuracy of directional representation, as measured by the half-width of the directional356
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Figure 6. Identifying and verifying a place cell using analyses in NeuroChaT recorded in rat
anterior thalamus [28]. (a) Top- the scatter plot of spiking-activity showing the path of the
animal (black line) and the location in the arena where spiking activity occurred (red dots);
Middle- the firing rate map of the unit showing the patch of locational receptive field. These
two plots provide the initial screening of the place unit. Bottom- the firing rate of the unit with
respect to the head-direction of the animal. The blue line shows the true rate and the green line
is the predicted rate as described by Cacucci et al. [8]. Both lines are very similar, implying
that there is a sampling bias for the head-direction and, therefore, the tuned rate towards
nearly north direction is not representative of the head-directional unit. (b) Multiple regression
analysis shows that location contributes to most of the variation in firing rate, confirming that
the location is the main contributing factor and, in this case, the only factor to contribute to the
spiking activity. (c) The distribution of Skaggs in randomly shuffled spike time (no. of shuffles
= 500). The 95th percentile (0.34) of the distribution is much lower than the Skaggs of the
original activity of the unit (1.16), so the place cell activity is not random. (d) The systematic
changes in Skaggs information content (IC) as spiking timing is shifted by −0.2 s to 0.4 s in
steps of 25 ms.
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tuning curve was unaltered (Pearson’s r2 = 0.715, p < 0.001). Head-directional partial r values357

and peak head-directional firing rate variables showed a significant decrease in value (Figure 7c358

and d; mean head-directional partial r value Z65 = −3.029, p = 0.002, peak head-directional359

rate Z65 = −2.109, p = 0.035). A number of other aspects were also studied, such as assessing360

whether the photic stress influences a specific sub-population of head-direction cells, see Figure 7361

(adapted from [36]).362

Assessment of rhythmic properties of a neuron363

Spike-train dynamics and the nature of the interaction with simultaneously recorded LFP364

provides vital information to understand the neuronal networks and the dynamics of individual365

neural components across different brain areas [18, 23]. Analysis of this sort can be important366

particularly for assessing the mechanism of spatial computation as it is hypothesised that there367

is a spatial information packaging by theta rhythms [24]. The cortical head-directional cells368

are segregated in time by alternating theta cycles according to their directional preference369

[23], hippocampal place cells show location specific phase-segregation reflecting the distance370

representation by time-compression, which is also dependent on speed of the animal [11], and371

separate theta cycles segregate distinct environmental representations and the changes in context,372

i.e. location of reward [18]. Analysis of theta-modulated units, theta-skipping units, and units373

to LFP phase synchrony are widely used in this regard. In NeuroChaT, we assess them using374

the following analyses:375

1. The distribution of ISI, and the relationship of the interval before vs interval after.376

2. The autocorrelation histogram of ISI, which exfoliates the rhythmic pattern merely observed377

for the ISI itself.378

3. The distribution of LFP-phases at the time of the unit activity [10], the phase-locking379

value (PLV) [17] and the spike-field coherence (SFC) [16] at different frequencies.380

A unit with clear rhythmicity in firing activity represented by a higher count of ISI at381

around 125 ms is shown in the upper row of Figure 8 [37]. This unit was co-recorded with382

head-directional cells in the electrophysiology study of thalamic nuclei [26, 28]. The scatter plot383

of ISI before and after shows distinct patches implying the replication of ISI at those values384

(roughly 125 ms). The autocorrelation histogram unfolds the rhythmicity more prominently.385

As the replication occurs at around 8 Hz or in the Theta-rhythmic band, this unit is called386

a theta-modulated cell. Further analysis of this unit provides its descriptive characteristics.387

The spike to LFP phase distribution shows that there is a higher count of phases at around388

195°. Although the delta band signal dominates the underlying LFP, the unit is still strongly389

locked to the theta-band as can be seen from the high PLV and SFC at around 10 Hz. The390

time-resolved PLV and SFC analysis of the unit provides further insight into the temporal nature391

of the locking. As the bottom row of Figure 8 shows, the locking is maximal at around 10 Hz392

throughout the entire window, but it evolves after the spiking event and maximises at a lag of393

roughly 125 ms, implying that the theta phase encodes the spiking event. One interpretation of394

the 125 ms lag for maximal locking is that the spiking event is encoded in the next cycle of the395

theta wave.396

Discussion397

We developed the NeuroChaT toolbox to facilitate and standardise the analysis of neuronal spike398

trains and their relationship to behaviour and to simultaneously recorded LFP signals. Neu-399

roChaT is hosted in a GitHub repository (https://github.com/shanemomara/omaraneurolab).400

We provide a simple graphical interface and an easy-to-use API for using the corresponding401

analysis techniques and managing data. We hope that providing a simple, easy to use software402
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Figure 7. Study of the effect of photic stress on postsubicular head-directional cells (adapted
from [36]). NeuroChaT output parameters were used to accomplish the study. a) Identification of
head-directional cells of recorded postsubicular cells. Correlation coefficients from multiple linear
regression analysis and subsequent cluster-analysis revealed spatial (purple) and head-directional
(blue) cells. The head-directional cells are not changing their preferred direction of firing, as
shown by the high correlation between the mean directions of the neurons before and after
stress induction (b), but the correlation coefficient representing the variability of the firing rates
due to head-direction (c) and the peak firing rates (d) changes. This implies that information
processing is disrupted due to stress experienced by the rats.
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Figure 8. Upper row: left- inter-spike interval (ISI) distribution revealing that this unit has high
burst propensity and is theta-rhythmic; middle-ISI before vs after discloses the characteristic
patches at around 125 ms indicating high replication of such ISI events; right- autocorrelation
of ISI histogram amplifies the rhythmic effect. Middle row: left- distribution of spike phases
with underlying local field potential (LFP) signal; right- LFP power spectrum showing that
there is a presence of weak theta-rhythm in the LFP. Lower row: although the LFP theta is
small, the frequency spectrum of spike-triggered average (STA; left), the spike-field coherence
(SFC; middle) and phase-locking value (PLV; right) all display strong locking to theta signal,
verifying the locking as seen in phase distribution. Bottom row: the time-resolved fast Fourier
transform (FFT) of STA (left), SFC (middle), and PLV (right) show that the peak locking does
not occur simultaneously and has a lag from the time of spike-onset. It may imply that the
LFP phase is encoding the spiking event instead of momentary representation or prediction of
the spikes. The lag time for peak metric is 125 ms, which may also imply that the spiking event
is represented in the next theta cycle instead of the synchronous one.
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package will facilitate the adoption of in vivo recording techniques. We hope that NeuroChaT,403

by assembling standard analyses techniques in one place along with a standard workflow will404

facilitate the adoption of standardised analyses for behavioural neurophysiology, and facilitate405

open data sharing and collaboration between laboratories. The simple GUI is designed for406

researchers without programming knowledge, while the versatile design in API provides an407

opportunity for neuroscientists with programming expertise to use the platform as a starting408

tool for extending their analytic capabilities. The built-in collection of analyses methods will409

allow them to quickly scan and infer the characteristics of the recorded neurons and refine their410

experimental protocols. The examples both here and in the project documentation depict how411

NeuroChaT can be used to build a custom analysis portfolio for characterising single units and412

population of neurons.413

Some commercial and open-source toolboxes, such as Neo [25], support conversion of electro-414

physiology data from several copyrighted formats (i.e. Axona, Blackrock, Plexon, NeuroExplorer415

etc.) to HDF5 format. NeuroChaT currently supports Axona and NeuraLynx formats. Integrat-416

ing other data formats will be useful to provide for the analytic need of scientists using recording417

systems from a wide range of vendors. Currently, NeuroChaT supports analyses that pertain to418

assessing the dynamics of spatial correlates of neuronal responses. Analysis of stimulus-response419

dynamics is also widely studied in neurophysiology. Extensive development of event-related420

analysis using both the LFP and single-unit data will potentially open the door for wide-spread421

reception among neurophysiologists. An effort to integrate or to interface popular automated422

spike sorting algorithms or toolboxes can also be undertaken. Although there are frameworks423

for LFP-LFP [14] and point-process causality analysis between spike-trains [20], as far as we424

are aware, there is no such framework for studying the causal relations between the spike-train425

of a unit and simultaneously recorded LFP signals. Future work will pursue this aspect of426

analysis as well. Owing to the rise of big data in neurophysiology and envisioning the use of427

cloud computing [32], future developments of NeuroChaT can target a cloud-native version to428

support distributed computing and work with algorithms to support such technologies.429

Data availability430

Underlying data431

Open Science Framework: NeuroChaT: Neuron Characterization Toolbox.432

DOI: https://doi.org/10.17605/OSF.IO/642YH [37].433

This project contains the following underlying data:434

• Example Place cell: 040513 1.hdf5(Assessment and validation of individual neurons -435

neuronal data to reproduce Figure 6. This data was recorded by Maciej Jankowski [28].)436

• Data from Passecker et al 2018.xlsx (Assessment and validation of a population of neurons -437

spreadsheet data containing the numerical output from NeuroChaT used to create Figure 7438

(adapted from [36]). This data was collected by Johannes Passecker [36])439

• Example theta modulated cell conjunctive speed cell: 112512 1.hdf5 (Assessment of440

rhythmic properties of a neuron - neuronal data to reproduce Figure 8. This data was441

recorded by Maciej Jankowski [26, 28].442

Extended data443
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Open Science Framework: NeuroChaT: Neuron Characterization Toolbox.444

DOI: https://doi.org/10.17605/OSF.IO/642YH [37]445

This project contains the following extended data:446

• Example Border cell: 040114 C3.hdf5 (recorded by Paul Wynne).447

• Example Gradient cell conjunctive angular head velocity and speed cell: 052214 C1.hdf5448

(recorded by Pual Wynne).449

• Example Grid cell: 120213 26.hdf5 (recorded by Maciej Jankowski).450

• Example Head Directional cell: 120412 1.hdf5 (recorded by Maciej Jankowski).451

Data are available under the terms of the Creative Commons Zero ”No rights reserved” data452

waiver (CC0 1.0 Public domain dedication).453

Software availability454

• An executable version of NeuroChaT for non-coder Windows users is available from: https:455

//github.com/shanemomara/omaraneurolab/releases/download/v1.1.0/NeuroChaT.exe456

• Source code available from: https://github.com/shanemomara/omaraneurolab/tree/457

master/NeuroChaT458

• Archived source code at time of publication: https://doi.org/10.5281/zenodo.3543732459

• License: GNU General Public License version 3460
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