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Abstract. We extend our prior research on light field view synthesis for vol-
ume data presented in the conference proceedings of VISIGRAPP 2019 [13]. In
that prior research, we identified the best Convolutional Neural Network, depth
heuristic, and image warping technique to employ in our light field synthesis
method. Our research demonstrated that applying backward image warping us-
ing a depth map estimated during volume rendering followed by a Convolutional
Neural Network produced high quality results. In this body of work, we further
address the generalisation of Convolutional Neural Network applied to different
volumes and transfer functions from those trained upon. We show that the Con-
volutional Neural Network (CNN) fails to generalise on a large dataset of head
magnetic resonance images. Additionally, we speed up our implementation to
enable better timing comparisons while remaining functionally equivalent to our
previous method. This produces a real-time application of light field synthesis for
volume data and the results are of high quality for low-baseline light fields.
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tion · Image Warping · Angular Resolution Enhancement.

1 INTRODUCTION

In our previous work we demonstrated a method for high quality light field synthesis on
a specific volume and transfer function [13]. Lacking a baseline for our particular prob-
lem, we evaluated multiple different strategies for each step of our method. To be spe-
cific, multiple CNNs, depth heuristics and warping methods were experimented with.
Although this provided detailed results for our specific dataset, we had minimal tests
for generalisation of the method to other volumes and transfer functions. We demon-
strated that training the CNN on a heart Magnetic Resonance Imaging (MRI) would not
be sufficient to then use the CNN on a head MRI. But, it is possible that the CNN could
be trained on head MRIs and generalise to work on other unseen MRIs, or be trained
on a set of transfer functions and generalise to work on similar transfer functions. To
investigate this idea of generalisability, we performed additional experiments on the
best performing strategy from our previous work. We present results for a dataset of
multiple head MRIs with different transfer functions, a far more variable case than our
original dataset of a heart MRI. Furthermore, the implementation has been rewritten to
take better advantage of shader functions, leading to far more efficient approach and
more accurate timings than the previous work.



As before, we aim towards low baseline light field displays with a fast light field
synthesis approach for volumetric data. Although light field display technology is still
in its infancy, devices such as The Looking Glass [2] and a near-eye light field display
[6] show promising results. Generating a light field allows for intuitive exploration of
volumetric data. In gross anatomy, studies have shown that students respond better to
three dimensional (3D) anatomical atlases for rapid identification of anatomical stuc-
tures [16], but is not necessary for deep anatomical knowledge. In this sense, a light
field synthesis approache fits very well for rapid exploration of anatomical structure.
For instance, on the microscopic level, histology volume reconstruction [24] could be
readily visualised in 3D without the need for glasses. However, it is impossible to ren-
der a light field from volumetric data using ray tracing techniques at interactive rates
without an extensive and expensive hardware setup. To move towards light field volume
visualisation at interactive rates, we use a view synthesis method from a single sample
view to avoid rendering every view in the light field.

Unlike conventional images, which record a two dimensional (2D) projection of
light rays, a light field describes the distribution of light rays in free space [33] de-
scribed by a four dimensional (4D) plenoptic function. Capturing an entire light field
is infeasible, so a light field is generally sampled by capturing a large uniform grid of
images of a scene. [7]. However, capturing this 4D data leads to an inherent resolution
trade off between dimensions. As such, the angular resolution, the number of images in
the grid, is often low compared to the spatial resolution, the size of each image in the
grid. Because of this, angular resolution enhancement, or view synthesis, from a limited
number of reference views is of great interest and benefit to a light field application.

Angular resolution enhancement for light fields of natural images (images taken
by a real camera) has many strong solutions [14,34,4]. However, for light fields from
volumetric data, we face some unique challenges. Natural image approaches generally
assume a unique depth in the scene, but volume renderings frequently feature semi-
transparent objects, resulting in an ill-defined depth. Additionally, as opposed to natural
light field imaging where the limitation is the resolution of the sensor, for volumetric
data the limitation is time. Speed of the approach is vital to us, as an exact light field
rendering can be produced with enough time. As such, many existing approaches are not
relevant without heavy modification. For instance, the recent state of the art approach
by [32] takes 2.57 seconds to produce a single 541× 376 view, while an entire light
field from a volume could be produced in a tenth of this time with a powerful Graphics
Processing Unit (GPU) for a small volume.

Our proposed method synthesises a light field from a single volume rendered sample
image, represented as a 2D grid of images captured by a camera moving along a plane.
As the first step in this process, a depth heuristic is used to estimate a depth map during
volume ray casting [36]. This depth map is converted to a disparity map using the known
virtual camera parameters. Backward image warping is performed using the disparity
map to shift information from the single sample image to all novel view locations.
Finally, the warped images are passed into a CNN to improve the visual consistency
of the synthesised views. This method is demonstrated for an 8× 8 angular resolution
light field (a grid of 64 images) but there is no inherent limitation on this other than
GPU memory.



We previously demonstrated that a CNN increases the visual consistency of synthe-
sised views, especially for those views at a large distance from the sample reference
view [13]. However, by testing on a large dataset of head MRIs, we further back up our
previous results on the lack of generalisation of the CNN. The CNN must be retrained
to be used on a specific volume and transfer function, its performance does not transfer
between sets. This is a significant limitation, but the CNN could be ommitted for par-
ticular use cases if a lower quality estimate is acceptable. Alternatively, for use cases
such as education, a library of specifically trained models could be produced.

The re-implemented method is very fast, an order of magnitude faster than render-
ing each view in the light by traditional volume ray casting. For low baseline light fields,
the results are of high quality, as the single sample view provides sufficient information
to estimate the light field. The method is particularly beneficial for large volumes be-
cause the time to synthesise a light field is independent of the size and complexity of the
volume and rendering techniques once a sample view has been produced. In high preci-
sion fields where exact results are required, the synthesis could be used for exploratory
purposes and a final render performed when the camera is held fixed. In this manner,
inevitable errors in the visualisation technique will not lead to medical misdiagnosis or
other serious problems.

2 BACKGROUND

2.1 Light Field Representation

The first description of the light field was the 7D plenoptic function recording the in-
tensity of light rays travelling in every direction (θ,φ) through every location in space
(x,y,z) for every wavelength λ, at every time t [1]. As a simplification, the plenoptic
function is assumed to be mono-chromatic and time invariant, reducing it to a 5D func-
tion L(x,y,z,θ,φ). In a region free of any occluders, the radiance along a ray remains
constant along a straight line, and the 5D plenoptic function reduces to the 4D function
L(x,y,θ,φ) [7,3]. This 4D plenoptic function is termed the 4D light field, or simply the
light field, the radiance along rays in empty space.

The most common light field representation is to parameterise a ray by its intersec-
tion with two planes, a uv plane and an st plane [7]. As such the 4D light field maps
rays passing through a point (u,v) on one plane and (s, t) on another plane to a radiance
value:

L : R4→ R, (u,v,s, t) 7→ L(u,v,s, t)

With this parameterisation, a light field can be effectively sampled using arrays of ren-
dered or digital images by considering the camera to sit on the uv plane, and capture
images on the st plane. It was later shown that if the disparity between neighbouring
views in a light field sampling is less than one pixel, novel views can be generated with-
out ghosting effects by the use of linear interpolation [9]. Since sampling rates are rarely
this high, to achieve such a densely sampled light field, view synthesis is a necessity.



2.2 Light Field View Synthesis

Light field view synthesis is the process of producing unseen views in the light field
from a set of sample views. This is a well studied problem [35,18,30], see [33] for a
review of light field view synthesis, as well as multiple other light field image process-
ing problems. However, because speed is essential to our problem, much of the existing
literature is unusable without significant modifications. Nonetheless, we recount promi-
nent literature here and elucidate why the majority of it can not be used directly.

A wide range of view synthesis approaches take advantage of the inherent structure
of light fields. A set of state of the art structure based approaches revolve around using
the properties of Epipolar-Plane Images (EPIs) [34,32]. In this context an EPI is a 2D
slice of the 4D light field in which one image plane co-ordinate is fixed and one camera
plane co-ordinate is fixed. For instance, fixing a horizontal co-ordinate t∗ on the image
plane, and v∗ on the camera plane produces an EPI:

E : R2→ R, (u,s) 7→ L(u,v∗,s, t∗)

A line of constant slope in an EPI corresponds to a point in 3D space where the slope
of the line is related to the depth of the point. For Lambertian objects, this means that
the instensity of the light field should not change along a line of constant slope [30].
This strong sense of structure is the basis of accurate view synthesis using EPIs. Other
structure based approaches transform the light field to other domains with similar strong
contraints [23,28]. Despite the good results from these approaches, the necessary do-
main transfer or slicing transforms are too slow for our purpose. As an example, [34]
takes roughly 16 minutes to synthesise a 64× 512× 512 light field which could be
rendered in under a second.

For large-baseline light fields, such as that required for the Looking Glass [2], meth-
ods based on multiplane images [22] represent the state of the art [14,38]. These revolve
around the principle of splitting reference views into multiple images at different depth
planes to gain more information and simplify the aggregation process with great suc-
cess. In volume rendering, a similar idea has been applied to view synthesis [10], by
subdividing the original ray-casting into a layered representation. The layered informa-
tion can be effectively transformed to a novel view, and combined via compositing an
efficient manner. Although this produces fast single view synthesis for a low number of
layers, and would be very effective for stereo magnification, the number of views re-
quired for a light field adds significant difficulty to the fast application of this paradigm.

As such, fast depth-based warping approaches are most relevant to our problem of
synthesising low-baseline light fields, as we can cheaply estimate some form of depth
during a volume rendering. With this in mind, the most relevant body of work to the
problem at hand is by Srinivasan et al. [26]. This is fast, synthesising a 187×270×8×8
light field in under one second on a NVIDIA Titan X GPU. For comparison, a state of
the art depth based approach [4] takes roughly 12.3 seconds to generate a single novel
view from four input images of 541×376 resolution. Srinivasan et al.’s [26] method is
fast, uses deep learning to account for specular highlights, and only requires a single
input view to synthesise a full light field. This is very relevant for volume rendering,
as speed is essential, surfaces are often anisotropically shaded, and rendering sample
views is especially slow.



A single image does not carry enough information to truthfully reconstruct the light
field, so at best a good estimate will result from this process. By taking advantage of
redundant information in the light field representation, the Srinivasan et al. [26] achieve
a high quality estimate, and a method summary follows here. First, a 3D CNN is ap-
plied to a single sample view to estimate the depth in the scene for a full light field.
Backward warping is then applied to the sample view using the depth maps to estimate
a Lambertian light field. Finally, the Lambertian light field is passed through a 3D CNN
to help account for specular highlights. This produces high quality results for objects
from specific categories, such as flowers. We base our approach on the method of [26],
but provide modifications to increase suitability for volume rendering.

Firstly, we avoid the expensive CNN based depth estimation step by estimating
depth during volume rendering for a single view. Warping information from sample
volume rendered views to synthesise new views [12,15] is feasible when rendered im-
ages do not change dramatically between viewpoints. Zellmann et al. [36] proposed to
warp images based on depth heuristics. Due to alpha compositing resulting in transpar-
ent surfaces without single depth values, the authors present multiple depth heuristics
for image warping. Returning depth value at the voxel where the accumulated opacity
along the ray reaches 80% during ray tracing achieved the best balance between speed
and quality.

Secondly, we propose to apply a 2D CNN to improve the quality of the novel views
as the 3D CNN from [26] is too slow for this problem. Although we have volumetric
information in a light field, remapping the 3D volume to a 2D structure is faster and
current deep learning architectures are often unable to fully exploit the power of 3D
representations [20]. Due to limitations of 3D CNNs, Wang et al. [29] demonstrate how
to map a 4D light field into a 2D VGG network [25] instead of using a 3D CNN. This
is beneficial as the weights of a pre-trained 2D model can be updated. Additionally,
although the 4D filters in 3D CNNs are intuitive to use on a 4D light field, the number
of parameters quickly explode.

3 LIGHT FIELD SYNTHESIS

Our goal is to quickly synthesise a low-baseline light field for visualisation purposes
from volumetric data. We demonstrate this for an 8× 8 angular resolution light field,
but there is no inherent limitation on this size other than GPU memory. The pipeline of
the method has not changed from our original description in [13]. The following steps
are involved in our light field synthesis (Figure 1).

1. Render a reference view by direct volume rendering and use a depth heuristic to
estimate a depth map during ray casting.

2. Convert the depth map to a disparity map using the intrinsic camera parameters.
3. Apply backward image warping to the reference view using the disparity map to

approximate a light field.
4. Apply a CNN to the warped images to improve visual consistency. This is mod-

elled as a residual function which is added to the approximate light field from the
previous step.



Fig. 1: Our proposed light field synthesis method can be broken down into distinct
stages, including an initial depth heuristic calculation stage and a final CNN stage act-
ing as a residual function to improve fine-grained detail. Extracted from our previous
work [13].

3.1 Volume Depth Heuristics

To apply image warping based on a depth map, we quickly estimate depth values during
the ray casting process. Due to the semi-transparent structures that frequently occur in
volume rendering, there is no well defined depth and a heuristic is a necessity. An
obvious approach is to use the depth of the first non-transparent voxel along the ray, but
this is often ineffective due to near transparent volume information close to the camera.
Using isosurfaces gives a good view of depth, but these must be recalculated during
runtime if the volume changes.

In our previous work [13], we proposed to modify the best performing single pass
depth heuristic from [36]. The heuristic from [36] is to save the depth of the voxel at
which the opacity accumulated along a ray exceeds a pre-defined opacity threshold. A
depth map formed in this way frequently lacks information at highly transparent regions
as the opacity threshold needs to be set to a large value. To counteract this limitation, we
applied a two-layered approach. A depth value is saved when a ray accumulates a low
threshold opacity and overwritten if the ray accumulates the high threshold opacity. The
layered approach can be repeated multiple times, but two layers was enough to capture
the volume in most cases. This improved the quality of the depth map over isosurfaces
and the best single pass method from Zelmann et al. [36]. A more detailed comparison
of different depth heuristics is provided in our previous work [13].

3.2 Converting Depth to Disparity

This mathematical conversion is the same process as our previous paper [13]. During
rendering, a depth value from the Z-buffer Zb ∈ [0,1] is converted to a pixel disparity
value using the intrinsic camera parameters as follows. The depth buffer value Zb is
converted into normalised device co-ordinates, in the range [−1,1], as Zc = 2 ·Zb− 1.
Then, perspective projection is inverted to give depth in eye space as

Ze =
2 ·Zn ·Z f

Zn +Z f −Zc · (Z f −Zn)
(1)



Where Zn and Z f are the depths of the camera’s near and far clipping planes in eye
space, respectively. Note that Zn should be set as close to the visualised object as pos-
sible to improve depth buffer accuracy, while Z f has negligible effect on the accuracy.
Given eye depth Ze, it is converted to a disparity value dr in real units using similar
triangles [31] as

dr =
B · f
Ze
−∆x (2)

Where B is the camera baseline, or distance between two neighbouring cameras in the
grid, f is the focal length of the camera, and ∆x is the distance between two neighbour-
ing cameras’ principle points. Again, using similar triangles, the disparity in real units
is converted to a disparity in pixels as

dp =
drWp

Wr
(3)

Where dp and dr denote the disparity in pixels and real world units respectively, Wp is
the image width in pixels, and Wr is the image sensor width in real units. If the image
sensor width in real units is unknown, Wr can be computed from the camera field of
view θ and focal length f as Wr = 2 · f · tan( θ

2 ).

3.3 Disparity Based Image Warping

The mathematical description of this operation is identical to our previous work [13].
To synthesise a novel view, a disparity map D : R2 7→R is used to relate pixel locations
in a novel view to those in the reference view. Let I : R2 7→ R3 denote a reference
Red Green Blue (RGB) colour image at grid position (ur, vr) with an associated pixel
valued disparity map D. Then a synthesised novel view I′ at grid position (un, vn) can
be formulated as:

I′(x+d · (ur−un), y+d · (vr− vn)) = I(x, y)

where d = D(x, y)
(4)

As opposed to the non-surjective hole producing forward warping operation, we
apply a surjective backward warping. For each pixel in the novel view, information is
inferred from the reference view. This results a hole free novel view but it is generally an
oversampled from the reference view. Pixels in the novel view that require information
from outside the border of the reference view instead used the closest border pixel.
This strategy effectively stretches the border of the reference view in the absence of
information. Since are dealing with low baseline light fields, this strategy is not overly
restrictive.

3.4 Convolutional Neural Network

To improve the fine-grained details of the synthesised light field, we apply a CNN to
the resulting images from image warping. The network is framed as a residual function
that predicts corrections to be made to the warped images to reduce the synthesis loss



in terms of mean squared error. The residual light field has full range over the colour in-
formation to allow for removal of predicted erroneous information and addition of pre-
dicted improvements. Srinivasan et al. [26] applied 3D convolutions to achieve a similar
goal. Because the light field is 4D, 3D CNNs which use 4D filters are intuitive to apply
to this problem. However, using 2D convolutions is advantageous as less parameters
are required for a 2D CNN. Additionally, more pretrained models and better optimisa-
tion tools exist for 2D CNNs than 3D CNNs. Wang et al. [29] previously demonstrated
strong evidence that 3D CNNs can be effectively mapped into 2D architectures.

To test remapping the 3D network from [26] into a 2D network, we compared four
CNNs architectures to improve the synthesised light field [13]. The CNNs were tested
on a single heart MRI with a fixed transfer function from different camera positions.
Each network was evaluated based on the difference to the baseline result of pure geo-
metrical image warping in terms of Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM). In the experiments, all networks improved the resulting light field
quality measured by SSIM. As such, the 3D CNN Srinivasan et al. [26] could be ef-
fectively remapped into a 2D architecture. In our tests, the best performing network
in terms of quality was a slightly modified Enhanced Deep Super-Resolution (EDSR)
network [8] taking an angular remapped input from [29], achieving an average of 0.923
SSIM on the validation set [13].

We briefly describe the 3D occlusion prediction network from Srinivasan et al. [26],
and the modified EDSR network [8] we use in its place. The 3D network is structured
as a residual network with 3× 3× 3 filters that have access to every view. The input
to the 3D network is all warped images and colour mapped disparity maps. Our EDSR
network is the same as the original EDSR network from [8], bar removal of spatial
upscaling at the last layer and application of tanh activation at the final layer. Spatial
upscaling is removed as we only require angular resolution enhancement, while tanh is
applied to allow residual output to add and remove information. To map the light field
input into the three colour channel RGB input required for EDSR, angular remapping
from [29] is applied. Angluar remapping transforms an n×m angular resolution light
field with x×y spatial resolution into an (n ·x)× (m ·y) image. In this remapped image,
the uppermost n×m pixels contain the upper-left pixel from each of the original n×m
light field views. There are two significant differences in this EDSR network from the
network of Srinivasan et al. [26], besides being a 2D network. Firstly, the disparity map
is not input to the network, reducing the number of input channels. Secondly, the 3×3
filters used in this network only consider the nearest neighbours to a view and this local
connectivity is very efficient.

4 IMPLEMENTATION

Note that these test sytem specifications differ from our previous work [13]. All new
experiments were performed on a computer with 8GB memory, an Intel(R) Xeon(R)
CPU E5-1620 v3 @ 3.50GHz Central Processing Unit (CPU), and a NVIDIA GeForce
RTX 2080 GPU running on Ubuntu 16.04. For deep learning, the PyTorch library [17]
was used with Cuda 10.0, cuDNN 7.1.2, and NVIDIA driver version 410.104.



4.1 Speed Improvements

Compared to our previous work [13], we have improved the implementation and speed
of multiple aspects of this research, but the result is functionally identical. Firstly, the
light field capturing approach was improved over rendering each view in the light field
separately. This enables faster data capture times, and more importantly allows for a
fairer baseline comparison of our method’s speed. This was achieved by creating two
large textures containing the entry and exit positions into the volumetric data for each
ray in the light field, and casting all of these rays in one step. Traversing the rays in a
single pass made better advantage of the highly parallel nature of GPUs. The resulting
method is roughly twice as fast as rendering views individually, leading to a fairer speed
comparison.

Additionally, the image warping procedure was improved considerably. Instead of
performing the image warping on the CPU using NumPy and PyTorch, fixed function
GPU shader code was implemented. First, the depth map from the reference view is
converted to a disparity in a fragment shader, and saved to a depth texture. Then, the
reference view colour texture and depth texture are passed to another fragment shader
which performs backward warping for each novel view, saving the result into multi-
ple viewports of a large colour texture. Unsurprisingly, this is far faster than the CPU
warping, close to two orders of magnitude faster.

4.2 Datasets

Using a 2D array of outward looking (non-sheared) perspective views with fixed field of
view [7], synthetic light field datasets were captured in the volume visualisation frame-
work Inviwo [27]. The cameras were shifted along an equidistant grid to keep their
optical axes parallel, removing the need to rectify the images to a common plane. Sam-
pling was performed uniformly, with the camera fixed to lie within a certain distance of
the central object. Additionally, a plane with its normal vector aligned with the camera
view direction is used to clip the volume, revealing detailed structures inside the vol-
ume and demonstrating the accuracy of the depth heuristic. See Figure 2 for the central
sub-aperture image of five captured light fields for each dataset.

In our prior research [13], the validity of our method was demonstrated for one
specific dataset, an MRI of a heart with visible aorta and arteries with a resolution of
512× 512× 96 [21]. Each of the 2000 sample training light fields and 100 validation
light fields were captured at 512×512 spatial resolution. This was a difficult dataset be-
cause the heart has a rough surface, and the aorta and arteries create intricate structures
which are difficult to reconstruct. However, the colours in the transfer function were
quite dark with low contrast. Additionally, the CNN could learn a specific single case
and generalisation was not fully tested. To address the limitations in these experiments,
we tested a new dataset with far more variety.

Using multiple head MRIs from a large scale neurological study [19] we captured
a highly varying dataset. Many hand designed functions are applied to these images,
as well as randomly generated transfer functions. The density values in each MRI vol-
ume were normalised to a common data range, so the transfer functions acted similarly



Fig. 2: Sample training light field central sub-aperture views. Heart MRI images are
from our previous work [13]. It should be immediately apparent that the dataset of head
MRIs has far more variation.

across the volumes. The generalisation of the deep learning could be evaluated by run-
ning the network against unseen MRIs volumes and unseen transfer functions during
training. In this manner, we could test if the volume or transfer function had more of
an effect on the generalisation of learning. The head MRI volumes are smaller than the
heart dataset, so these were captured at 256×256 spatial resolution. 2000 training light
fields are captured, with 400 validation light fields for non-training volumes and 400
light fields for non-training transfer functions.

4.3 Training Procedure

The training procedure for the convolutional network is identical to that described in
[13]. The CNNs are trained by minimising the per-pixel mean squared error between
the ground truth views and the synthesised views. For the heart dataset, to increase
training speeds and the amount of available data, four random spatial patches of size
128×128 were extracted from each light field at every training epoch. Training colour
images for both datasets have a random gamma applied as data augmentation. Network
optimisation was performed with Stochastic gradient descent and Nesterov momentum.
An initial learning rate of 0.1 was updated during learning by cosine annealing the
learning rate with warm restarts [11]. Gradients were clipped based on the norm at a
value of 0.4 and an L2 regularisation factor of 0.0001 was applied. Training takes about
14 hours using the 2D CNN architecture with eight CPU cores used for data loading
and image warping.

5 EXPERIMENTS

5.1 Generalisation of Deep Learning

We previously tested multiple CNNs on a single volume and transfer function, with
different camera positions [13]. As discussed in Section 3, the best performing net-
work in terms of quality was the EDSR network [8] taking an angular remapped input.



This resulted in a residual function which improved the visual quality of novel views,
especially for those far from the reference view, see Figure 3. Additional evaluation per-
formed with PSNR andthe Learned Perceptual Image Patch Similarity (LPIPS) metric
[37] using the deep features of AlexNet [5] to form a perceptual loss function agrees
with the per image values for SSIM. See Figure 4 for the bottom right sub-aperture
view of this light field from a validation set along with difference images to visualise
the effect of the CNN.
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Fig. 3: The difference in SSIM per image location after applying the EDSR network to
the warped images. Images far away from the reference view exhibited lower loss, but
the CNN caused a degradation in quality of the reference image. Position (5,5) is the
location of the reference view. Extracted from our previous work [13].

Although the learnt residual function worked well for a single volume, our initial
tests indicated that this learnt function would not generalise for multiple transfer func-
tions and volumes [13]. In contrast, the image warping procedure and depth heuristic
did generalise well across volumes and transfer functions. Using our dataset consisting
of multiple different head MRIs and transfer functions from [19], we found that the
learning certainly did not generalise. Due to the lack of a clear pattern in this widely
varying data, the CNN quickly learnt to regress the residual function to a blank output.
This demonstrates that the CNN could not predict effective changes for multiple vol-
umes and transfer functions. Although this a significant limitation of this method, it is
an extremely important result. In particular, it is necessary to train the CNN to handle
specific volumes with fixed transfer functions. For some cases, such as an educational
demonstration, this would be feasible as a specific set of volumes could be selected that
elucidate a topic.



(a) AngularEDSR
PSNR 36.05
SSIM 0.909

(b) Warping alone
PSNR 35.59
SSIM 0.903

(c) Ground truth
PSNR 100.0
SSIM 1.000

(d) Difference
of (a) and (b)

(e) Difference
of (a) and (c)

(f) Difference
of (b) and (c)

Fig. 4: The bottom right view in the light field which Figure 3 presents results for.
Figure (d) visualises the residual applied by the CNN to the warped images to improve
visual quality. The CNN detects broad edges to improve, such as the central arch of the
aorta, but fails to improve finer details such as the arteries in the top right of the image.
Extracted from our previous work [13].

5.2 Example Synthesised Light Fields

To investigate the method performance, examples of a low, middling, and high quality
synthesised light fields from the validation sets are presented in Figures 5 and 6. For
the head MRI dataset, Figure 5(b) is a poor reconstruction due to a large number of
cracks appearing in the wavy semi-transparent structure of the cerebral cortex. Figure
5(e) is a reasonably well synthesised view, but skull and brain’s borders are inaccurately
estimated. Figure 5(h) is an accurate synthesis as the information is moved very well to
the novel view, though the image is blurry. For the heart MRI dataset, Figure 6(b) is a
poor reconstruction due to the opaque structure that should be present in the centre of
the view causing a large crack in the image. Figure 6(e) is a reasonably well synthe-
sised view, though some arteries lose their desired thickness and the image is not very
sharp. Figure 6(h) is an accurate synthesis, although some errors are seen around object
borders, such as on the arch of the aorta.



(a) Reference (b) Synthesised (c) Ground truth

(d) Reference (e) Synthesised (f) Ground truth

(g) Reference (h) Synthesised (i) Ground truth

Fig. 5: Example synthesised upper-left images for the head MRI. The first row has low
performance (25.8 PSNR, 0.60 SSIM) due to the abundant translucent structures. The
second row has middling performance (25.3 PSNR, 0.75 SSIM) since the background
has erroneously been picked up in the novel view information. The third row has high
performance (28.0 PSNR, 0.86 SSIM) with small inaccuracies, including a general blur-
riness and splitting on the lower edge of the head.

5.3 Time Performance

All timing performances are reported on 300 512× 512× 8× 8 light fields captured
in Inviwo of the heart MRI discussed in Section 4.2. In our previous work [13], we
assumed that the light field was rendered view by view. With this assumption, rendering
such a light field takes 1.25s on average with 93ms std dev. With the improved method
taking advantage of large textures, rendering a light field takes 612ms on average, with



(a) Reference (b) Synthesised (c) Ground truth

(d) Reference (e) Synthesised (f) Ground truth

(g) Reference (h) Synthesised (i) Ground truth

Fig. 6: Example synthesised upper-left images for the heart MRI. The first row has low
performance (29.0 PSNR, 0.90 SSIM) due to the translucent structures at the front of
the view. The second row has middling performance (31.7 PSNR, 0.86 SSIM) since
the arteries are not perfectly distinguished from the aorta. The third row has high per-
formance (35.3 PSNR, 0.91 SSIM) with small inaccuracies, such as on the lower right
edge of the aorta.

standard devation of 20ms. Using our method is an nearly an order of magnitude faster
than this, taking 72ms on average, with negligible standard deviation of less than 0.1ms.
This is 72ms is broken down in Table 1, with average values given over all 300 light
fields. The timing for the CNN includes the time to transform the values in the GPU
texture to a PyTorch CUDA tensor, which could potentially be alleviated by reusing the
GPU memory. The GLSL shader code implementation of our image warping operation



is two orders of magnitude faster than our previous pytorch implementation [13] with
a time reduction from 2.77 seconds to 10ms. Note that the whole pipeline takes only
32ms to synthesise a light field without applying a CNN. As such, a 512×512 volume
could be visualised in a 512× 512× 8× 8 light field at interactive rates of 30 frames
per second.

Table 1: Average timing values in ms.
Operation Average Time (ms)
Rendering the reference view 19ms
Computing the depth heuristic 1ms
Converting depth to disparity 2ms
Image warping 10ms
CNN 40ms

As aforementioned, the time for light field synthesis has far less deviation than
directly volume rendering a light field, because the latter depends heavily on the com-
plexity of the scene. A CNN performs the same operations regardless of input volume
size and complexity, which results in steady performance. The fixed function backward
warping and disparity conversion shaders also perform the same operation regardless
of the volume size and complexity. For a fixed spatial resolution, the only time variable
is rendering the single sample view. Accordingly, this method could be applied to very
large complex volumes with expensive rendering techniques.

6 CONCLUSION

Synthesising light fields by image warping produces a useful visualisation method that
runs in real-time producing a 512× 512× 8× 8 light field in an eight of the time to
render the light field by ray casting. Additionally, the rendering time for our method is
fixed after rendering the central view regardless of the size of the volume or the trans-
fer function applied. A signification limitation of this approach is that the CNN must
be retrained for every combination of volume and transfer function. However, a purely
image warping based visualisation would still be useful for exploratory purposes as the
exact result can be rendered when the camera is held fixed. There is still significant lim-
itations in the quality of the result beyond low-baseline light fields, as a single sample
view is not sufficient to extrapolate for a wide-baseline. For wide-baselines, we believe
that a fruitful avenue could be to combine multiplane image approaches [10,14,38] for
a new volume targeted approach.
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